Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: https://repo.btu.kharkov.ua/handle/123456789/62919
Название: Технологія традиційних м’ясних виробів із використанням альтернативного білка та натуральних барвників
Другие названия: Technology of traditional meat products with the use of alternative protein and natural dyes
Авторы: Філон, Андрій Михайлович
Научный руководитель: Головко, Т. М.
metadata.dc.contributor.affiliation: Державний біотехнологічний університет
Кафедра технології м’яса
Ключевые слова: Європейська кухня;м’ясні вироби;альтернативні білки;харчові барвники;відходи харчових виробництв;здорова дієта;нульовий голод;якісні характеристики;European cuisine;meat products;alternative proteins;food coloring;food waste;healthy diet;zero hunger;quality characteristics
Дата публикации: 2024
Издательство: Харків: ДБТУ
Библиографическое описание: Філон А. М. Технологія традиційних м’ясних виробів із використанням альтернативного білка та натуральних барвників: кваліфікаційна робота магістра: спец. 181 - Харчові технології; наук. кер. Т. М. Головко. Харків: ДБТУ, 2024. 144 с.
Краткий осмотр (реферат): Кваліфікаційну роботу магістра присвячено розробці технології ферментованої ковбаси Італійської салямі з використанням натурального барвника із буряку, що є джерелом природніх нітритів та альтернативних білків. Результати показали, що методи сушіння суттєво вплинули на якісні характеристики буряків, попередньо оброблених заморожуванням-розморожуванням. Попереднє оброблення заморожуванням-розморожуванням призвело до найдовшого часу сушіння 1340,0 хв, тоді як мікрохвильова вакуумна сушка і вакуумна сушка вимагали меншого часу сушіння порівняно з іншими методами сушіння. Встановлено, що буряк, попередньо оброблений заморожуванням-розморожуванням, отриманий методом сонячної сушки, показав найнижчу швидкість усадки та твердість, а також найвищий коефіцієнт регідратації 6,49. Досліджені результати забарвлення показали, що буряк, попередньо оброблений заморожуванням-розморожуванням, приготовлений з використанням сонячної сушки, мав найкращий зовнішній вигляд кольору з найнижчим ΔE 5,93 і найвищим значенням F. Відповідно до мікроструктурних результатів, буряки, висушені мікрохвильовою вакуумною та вакуумною сушкою мали пористу структуру. Заморозка-розморожуванням у поєднанні з сонячною сушкою завдала значної шкоди клітинній структурі буряка, що призвело до сильного зморщування тканини та колапсу, і як результат до найкращого часу сушіння, що склав 560 хв. Відповідно вміст біологічно активних сполук, попередньо оброблених заморожуванням - розморожуванням коренеплоди буряка, отримані за допомогою сонячної сушки, демонструють найвищий вміст бетаціаніну, бетаксантину, аскорбінової кислоти, загальної кількості фенольних кислот і загальної кількості флавоноїдів. Відзначено, що буряк, попередньо оброблений заморожуванням -розморожуванням, підданий сонячній сушці, продемонстрував найвищу здатність поглинати радикали ABTS (13,64 мг/100 г d.m.) і значення FRAP (16,65 мг/100 г d.m.). Можна зробити висновок, що сонячна сушка є оптимальним способом сушіння буряків, попередньо оброблених заморожуванням-розморожуванням, з перевагами високих якісних властивостей і малого часу сушіння. Проведено дослідження на основі, яких описано рецептуру і технологію Італійської салямі, збагаченої альтернативними білками та натуральним барвником. Буряк (Beta vulgaris L. var. conditiva Alef.) отриманий заморожуванням-розморожуванням та сонячною сушкою є ефективним джерелом нітритів у виробництві Італійської салямі. Додавання альтернативних білків, а саме порошок равликів (Lissachatina fulica) та ізоляту білка насіння гарбуза (Cucurbita pepo var. styriaca), до рецептури сприяло зменшення вмісту м’яса та покращення мікробіологічних показників. Це зменшило кліматичний вплив від виробництва Італійської салямі та збільшило її харчову стійкість. Додавання порошку буряка та альтернативних білків зменшило вміст вологи та вихід Італійської салямі. Встановлено, що збільшення кількості порошку буряку в рецептурі понад 1,5 %, почало погіршувати колір салямі, через високий вміст беталаїну, що не відповідав традиційному для Італійської кухні. Тому, найкращий зразок серед дослідних був А2 з 1,5 % порошку буряка. Дослідні зразки з додаванням порошку буряка показали кращі мікробіологічні показники ніж контрольні. Це дослідження відкриває нові можливості для використання натуральних альтернатив нітриту натрію, адже процес отримання порошку буряка є простим та ефективним. При цьому сушений буряк містить високу кількість нітратів, які перетворюються на нітрити під час ферментації
The Master's thesis is dedicated to the development of a technology for fermented Italian salami using a natural beetroot coloring, which serves as a source of natural nitrates and alternative proteins. The results showed that drying methods significantly influenced the quality characteristics of beets pre-treated by freezing and thawing. Freezing and thawing treatment resulted in the longest drying time of 1340 minutes, while microwave vacuum drying and vacuum drying required less time compared to other drying methods. It was found that beets pre-treated by freezing and thawing and dried using solar drying had the lowest shrinkage rate and hardness, as well as the highest rehydration coefficient of 6.49. The color analysis results showed that beets pre-treated by freezing and thawing, dried using solar drying, exhibited the best external color appearance with the lowest ΔE value (5.93) and the highest F value. According to microstructural results, beets dried by microwave vacuum drying and vacuum drying had a porous structure. The combination of freezing-thawing and solar drying caused significant damage to the beetroot cell structure, resulting in strong tissue shrinkage and collapse, which led to the shortest drying time of 560 minutes. The content of biologically active compounds in the beets pre-treated by freezing and thawing showed that they contained the highest levels of betacyanin, betaxanthin, ascorbic acid, total phenolic acids, and flavonoids. Furthermore, beets pre-treated by freezing and thawing and dried using solar drying demonstrated the highest ABTS radical scavenging capacity (13.64 mg/100 g dry matter) and the highest FRAP value (16.65 mg/100 g dry matter). These findings suggest that solar drying is the optimal method for drying beets pre-treated by freezing and thawing, offering superior quality properties and a short drying time. The research also explored the formulation and technology of Italian salami enriched with alternative proteins and natural dyes. Beets (Beta vulgaris L. var. conditiva Alef.), obtained through freezing-thawing and solar drying, serve as an effective source of nitrates in the production of Italian salami. The addition of alternative proteins, such as snail powder (Lissachatina fulica) and pumpkin seed protein isolate (Cucurbita pepo var. styriaca), to the formulation helped reduce the meat content and improved microbiological indicators. This reduced the climate impact of Italian salami production and increased its nutritional stability. The addition of beet powder and alternative proteins reduced the moisture content and yield of the Italian salami. It was found that increasing the amount of beet powder in the formulation beyond 1.5% started to negatively affect the color of the salami due to the high betalaine content, which did not align with traditional Italian cuisine standards. Therefore, the best sample among the experimental ones was A2, with 1.5% beet powder. Experimental samples containing beet powder showed better microbiological indicators than the control group. This study opens new possibilities for using natural alternatives to sodium nitrite, as the process of obtaining beet powder is simple and effective. Additionally, dried beetroot contains a high amount of nitrates, which are converted into nitrites during fermentation.
URI (Унифицированный идентификатор ресурса): https://repo.btu.kharkov.ua/handle/123456789/62919
Использованная литература: 1. Alshahrani, S. M., Fraser, G. E., Sabaté, J., Knutsen, R., Shavlik, D., Mashchak, A., Lloren, J. I., Orlich, M. J. (2019). Red and processed meat and mortality in a low meat intake population. Nutrients, 11(3), 622. https://doi.org/10.3390/nu11030622 2. Virtanen, H. E. K., Voutilainen, S., Koskinen, T. T., Mursu, J., Kokko, P., Ylilauri, M. P. T., Tuomainen, T.-P., Salonen, J. T., & Virtanen, J. K. (2019). Dietary proteins and protein sources and risk of death: The Kuopio Ischaemic Heart Disease Risk Factor Study. American Journal of Clinical Nutrition, 109(6), 1462–1471. https://doi.org/10.1093/ajcn/nqz025 3. Kaur, R., & Sharma, M. (2019). Cereal polysaccharides as sources of functional ingredient for reformulation of meat products: A review. Journal of Functional Foods, 62, 103527. https://doi.org/10.1016/j.jff.2019.103527 4. GlobeNewswire. (2024). $228+ Billion Worldwide Functional Foods Industry to 2030—Identify Growth Segments for Investment. GlobeNewswire. Retrieved from https://www.globenewswire.com/news release/2021/12/07/2347213/28124/en/228-Billion-Worldwide-Functional-Foods Industry-to-2030-Identify-Growth-Segments-for-Investment.html 5. Alongi, M., & Anese, M. (2021). Re-thinking functional food development through a holistic approach. Journal of Functional Foods, 81, 104466. https://doi.org/10.1016/j.jff.2021.104466 6. Hasler, C. M. (2002). Functional foods: Benefits, concerns and challenges—A position paper from the American Council on Science and Health. Journal of Nutrition, 132(12), 3772–3781. https://doi.org/10.1093/jn/132.12.3772 7. Beriain, M. J., Gómez, I., Ibáñez, F. C., Sarriés, M. V., & Ordóñez, A. I. (2018). Improvement of the functional and healthy properties of meat products. Food Quality, Balance & Health Dis, 13, 1–74. https://doi.org/10.1016/B978-0-12-811442-1.00001-8 8. Teixeira, A., & Rodrigues, S. (2021). Consumer perceptions towards healthier meat products. Current Opinion in Food Science, 38, 147–154. https://doi.org/10.1016/j.cofs.2020.12.004 9. Granato, D., Barba, F. J., Bursać Kovačević, D., Lorenzo, J. M., Cruz, A. G., & Putnik, P. (2020). Functional foods: Product development, technological trends, efficacy testing, and safety. Annual Review of Food Science and Technology, 11, 93–118. https://doi.org/10.1146/annurev-food-032519-051708 10. Lund, M. N. (2021). Reactions of plant polyphenols in foods: Impact of molecular structure. Trends in Food Science & Technology, 112, 241–251. https://doi.org/10.1016/j.tifs.2021.03.056 11. Agüero, N. D. L., Frizzo, L. S., Ouwehand, A. C., Aleu, G., & Rosmini, M. R. (2020). Technological characterisation of probiotic lactic acid bacteria as starter cultures for dry fermented sausages. Foods, 9(5), 596. https://doi.org/10.3390/foods9050596 12. Fernández-López, J., Viuda-Martos, M., & Pérez-Alvarez, J. A. (2021). Quinoa and chia products as ingredients for healthier processed meat products: Technological strategies for their application and effects on the final product. Current Opinion in Food Science, 40, 26–32. https://doi.org/10.1016/j.cofs.2020.05.004 13. Ruusunen, M., & Puolanne, E. (2005). Reducing sodium intake from meat products. Meat Science, 70(3), 531–541. https://doi.org/10.1016/j.meatsci.2004.07.016 14. Pires, M. A., Munekata, P. E. S., Baldin, J. C., Rocha, Y. J. P., Carvalho, L. T., dos Santos, I. R., Barros, J. C., & Trindade, M. A. (2017). The effect of sodium reduction on the microstructure, texture and sensory acceptance of Bologna sausage. Food Structure, 14, 1–7. https://doi.org/10.1016/j.foostr.2017.05.002 15. Pateiro, M., Munekata, P. E. S., Cittadini, A., Domínguez, R., & Lorenzo, J. M. (2021). Metallic-based salt substitutes to reduce sodium content in meat products. Current Opinion in Food Science, 38, 21–31. https://doi.org/10.1016/j.cofs.2020.10.029 16. Rosmini, M. R., Frizzo, L. S., & Zogbi, A. P. (2008). Meat products with low sodium content: Processing and properties. In Technological Strategies for Functional Meat Products Development (pp. 87–108). Transworld Research Network. Retrieved from https://www.cabidigitallibrary.org/doi/full/10.5555/20093095602 17. Appel, L. J., & Anderson, C. A. M. (2010). Compelling evidence for public health action to reduce salt intake. New England Journal of Medicine, 362(8), 650–652. https://doi.org/10.1056/NEJMe0910352 18. World Health Organization (WHO). (2015). European Food and Nutrition Action Plan 2015–2020. Regional Office for Europe. Retrieved from https://apps.who.int/iris/handle/10665/329405 19. Vidal, V. A. S., Paglarini, C. S., Lorenzo, J. M., Munekata, P. E. S., & Pollonio, M. A. R. (2021). Salted meat products: Nutritional characteristics, processing and strategies for sodium reduction. Food Reviews International. https://doi.org/10.1080/87559129.2021.1949342 20. Domínguez, R., Pateiro, M., Pérez-Santaescolástica, C., Munekata, P. E. S., & Lorenzo, J. M. (2017). Salt reduction strategies in meat products made from whole pieces. In Strategies for Obtaining Healthier Foods (pp. 267–289). Nova Science Publishers. ISBN 978-1-53612-159-9. 21. Toldrá, F. (2006). The role of muscle enzymes in dry-cured meat products with different drying conditions. Trends in Food Science & Technology, 17(4), 164–168. https://doi.org/10.1016/j.tifs.2005.08.007 22. Zhao, B., Zhou, H., Zhang, S., Pan, X., Li, S., Zhu, N., Wu, Q., Wang, S., Qiao, X., & Chen, W. (2020). Changes of protein oxidation, lipid oxidation, and lipolysis in Chinese dry sausage with different sodium chloride curing salt content. Food Science & Human Wellness, 9(4), 328–337. https://doi.org/10.1016/j.fshw.2020.04.013 23. Corral, S., Salvador, A., & Flores, M. (2013). Salt reduction in slow fermented sausages affects the generation of aroma active compounds. Meat Science, 93(4), 776–785. https://doi.org/10.1016/j.meatsci.2012.11.040 24. Hu, Y., Zhang, L., Zhang, H., Wang, Y., Chen, Q., & Kong, B. (2020). Physicochemical properties and flavour profile of fermented dry sausages with a reduction of sodium chloride. LWT, 124, 109061. https://doi.org/10.1016/j.lwt.2020.109061 25. Chen, Q., Hu, Y., Wen, R., Wang, Y., Qin, L., & Kong, B. (2021). Characterisation of the flavour profile of dry fermented sausages with different NaCl substitutes using HS-SPME-GC-MS combined with electronic nose and electronic tongue. Meat Science, 172, 108338. https://doi.org/10.1016/j.meatsci.2020.108338 26. Campagnol, P. C. B., dos Santos, B. A., Morgano, M. A., Terra, N. N., & Pollonio, M. A. R. (2011). Application of lysine, taurine, disodium inosinate and disodium guanylate in fermented cooked sausages with 50% replacement of NaCl by KCl. Meat Science, 87(3), 239–243. https://doi.org/10.1016/j.meatsci.2010.10.018 27. dos Santos, B. A., Campagnol, P. C. B., Morgano, M. A., & Pollonio, M. A. R. (2014). Monosodium glutamate, disodium inosinate, disodium guanylate, lysine and taurine improve the sensory quality of fermented cooked sausages with 50% and 75% replacement of NaCl with KCl. Meat Science, 96(2), 509–513. https://doi.org/10.1016/j.meatsci.2013.08.024 28. van Buren, L., Dötsch-Klerk, M., Seewi, G., & Newson, R. (2016). Dietary impact of adding potassium chloride to foods as a sodium reduction technique. Nutrients, 8(4), 235. https://doi.org/10.3390/nu8040235 29. Sindelar, J. J., & Milkowski, A. L. (2012). Human safety controverses surrounding nitrate and nitrite in the diet. Nitric Oxide, 26(4), 259–266. https://doi.org/10.1016/j.niox.2012.03.011 30. Lu, J., Li, M., Huang, Y., Xie, J., Shen, M., & Xie, M. (2022). A comprehensive review of advanced glycosylation end products and N-Nitrosamines in thermally processed meat products. Food Control, 131, 108449. https://doi.org/10.1016/j.foodcont.2021.108449 31. De Mey, E., De Maere, H., Paelinck, H., & Fraeye, I. (2017). Volatile N-nitrosamines in meat products: Potential precursors, influence of processing, and mitigation strategies. Critical Reviews in Food Science and Nutrition, 57(14), 2909–2923. https://doi.org/10.1080/10408398.2015.1078769 32. Bedale, W., Sindelar, J. J., & Milkowski, A. L. (2016). Dietary nitrate and nitrite: Benefits, risks, and evolving perceptions. Meat Science, 120, 85–92. https://doi.org/10.1016/j.meatsci.2016.03.009 33. Munekata, P. E. S., Rocchetti, G., Pateiro, M., Lucini, L., Domínguez, R., & Lorenzo, J. M. (2020). Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: An overview. Current Opinion in Food Science, 31, 81–87. https://doi.org/10.1016/j.cofs.2020.03.003 34. Flores, M., & Toldrá, F. (2021). Chemistry, safety, and regulatory considerations in the use of nitrite and nitrate from natural origin in meat products. Meat Science, 171, 108272. https://doi.org/10.1016/j.meatsci.2020.108272 35. Grant, A., & Parveen, S. (2017). All natural and clean-label preservatives and antimicrobial agents used during poultry processing and packaging. Journal of Food Protection, 80(4), 540–544. https://doi.org/10.4315/0362-028X.JFP-16-146 36. Ko, Y. M., Park, J. H., & Yoon, K. S. (2017). Nitrite formation from vegetable sources and its use as a preservative in cooked sausage. Journal of Science of Food and Agriculture, 97(5), 1774–1783. https://doi.org/10.1002/jsfa.7974 37. Oliveira, W. A., Rodrigues, A. R. P., Oliveira, F. A., Oliveira, V. S., Laureano-Melo, R., Stutz, E. T. G., Lemos Junior, W. J. F., Paula, B. P., Esmerino, E. A., Corich, V., et al. (2021). Potentially probiotic or postbiotic pre-converted nitrite from celery produced by an axenic culture system with probiotic lacticaseibacilli strain. Meat Science, 174, 108408. https://doi.org/10.1016/j.meatsci.2020.108408 38. Jin, S.-K., Choi, J. S., Yang, H.-S., Park, T.-S., & Yim, D.-G. (2018). Natural curing agents as nitrite alternatives and their effects on the physicochemical, microbiological properties and sensory evaluation of sausages during storage. Meat Science, 146, 34–40. https://doi.org/10.1016/j.meatsci.2018.07.032 39. Palamutoğlu, R., Fidan, A., & Kasnak, C. (2018). Spinach powder addition to sucuk for alternative to nitrite addition. Bulletin of the Transilvania University of Brasov, Series II: Forestry, Wood Industry, Agricultural and Food Engineering, 11(2), 155–162. Retrieved from https://webbut.unitbv.ro/index.php/Series_II/article/view/700/634 40. Falowo, A. B., Fayemi, P. O., & Muchenje, V. (2014). Natural antioxidants against lipid-protein oxidative deterioration in meat and meat products: A review. Food Research International, 64, 171–181. https://doi.org/10.1016/j.foodres.2014.06.022 41. Beck, P. H. B., Matiucci, M. A., Neto, A. A. M., & Feihrmann, A. C. (2021). Sodium chloride reduction in fresh sausages using salt encapsulated in carnauba wax. Meat Science, 175, 108462. https://doi.org/10.1016/j.meatsci.2021.108462 42. Chen, X., Li, J., Zhou, T., Li, J., Yang, J., Chen, W., & Xiong, Y. L. (2016). Two efficient nitrite-reducing Lactobacillus strains isolated from traditional fermented pork (Nanx Wudl) as competitive starter cultures for Chinese fermented dry sausage. Meat Science, 121, 302–309. https://doi.org/10.1016/j.meatsci.2016.06.007 43. Cheng, J. R., Liu, X. M., & Zhang, Y. S. (2018). Characterization of Cantonese sausage fermented by a mixed starter culture. Journal of Food Processing and Preservation, 42(6), e13623. https://doi.org/10.1111/jfpp.13623 44. Wang, X., Zhang, Y., Sun, J., Pan, P., Liu, Y., & Tian, T. (2021). Effects of starter culture inoculation on microbial community diversity and food safety of Chinese Cantonese sausages by high-throughput sequencing. Journal of Food Science and Technology, 58(4), 931–939. https://doi.org/10.1007/s13197-020-04607-y 45. Xiao, Y., Li, P., Zhou, Y., Ma, F., & Chen, C. (2018). Effect of inoculating Lactobacillus pentosus R3 on N-nitrosamines and bacterial communities in dry fermented sausages. Food Control, 87, 126–134. https://doi.org/10.1016/j.foodcont.2017.12.025 46. Sallan, S., Kaban, G., Şişik Oğraş, Ş., Çelik, M., Kaya, M. (2020). Nitrosamine formation in a semi-dry fermented sausage: Effects of nitrite, ascorbate and starter culture and role of cooking. Meat Science, 159, 107917. https://doi.org/10.1016/j.meatsci.2019.107917 47. Kim, H. S., & Hur, S. J. (2018). Effect of six different starter cultures on the concentration of residual nitrite in fermented sausages during in vitro human digestion. Food Chemistry, 239, 556–560. https://doi.org/10.1016/j.foodchem.2017.06.160 48. Thøgersen, R., Gray, N., Kuhnle, G., Van Hecke, T., De Smet, S., Young, J. F., Sundekilde, U. K., Hansen, A. K., Bertram, H. C. (2020). Inulin fortification of a processed meat product attenuates formation of nitroso compounds in the gut of healthy rats. Food Chemistry, 302, 125339. https://doi.org/10.1016/j.foodchem.2019.125339 49. Roila, R., Branciari, R., Staccini, B., Ranucci, D., Miraglia, D., Altissimi, M. S., Mercuri, M. L., Haouet, N. M. (2018). Contribution of vegetables and cured meat to dietary nitrate and nitrite intake in the Italian population: Safe level for cured meat and controversial role of vegetables. Italian Journal of Food Safety, 7, 168–173. https://doi.org/10.4081/ijfs.2018.7692 50. Merino, L., Darnerud, P. O., Toldrá, F., & Ilbäck, N. -G. (2016). Time dependent depletion of nitrite in pork/beef and chicken meat products and its effect on nitrite intake estimation. Food Additives & Contaminants: Part A, 33(1), 1–7. https://doi.org/10.1080/19440049.2015.1125530 51. Munekata, P. E. S., Pateiro, M., Domínguez, R., Santos, E. M., & Lorenzo, J. M. (2021). Cruciferous vegetables as sources of nitrate in meat products. Current Opinion in Biotechnology, 38, 1–7. https://doi.org/10.1016/j.cofs.2020.10.021 52. Luo, H., Li, P., Zhang, H., Diao, X., & Kong, B. (2020). Nitrosylmyoglobin formation in meat by Lactobacillus fermentum AS1.1880 is due to its nitric oxide synthase activity. Meat Science, 166, 108122. https://doi.org/10.1016/j.meatsci.2020.108122 53. Salminen, S., Collado, M. C., Endo, A., Hill, C., Lebeer, S., Quigley, E. M. M., Sanders, M. E., Shamir, R., Swann, J. R., Szajewska, H., et al. (2021). The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology & Hepatology, 18(11), 649–667. https://doi.org/10.1038/s41575-021-00440-6 54. Wegh, C. A. M., Geerlings, S. Y., Knol, J., Roeselers, G., & Belzer, C. (2019). Postbiotics and their potential applications in early life nutrition and beyond. International Journal of Molecular Sciences, 20(19), 4673. https://doi.org/10.3390/ijms20194673 55. Chen, X., Mi, R., Qi, B., Xiong, S., Li, J., Qu, C., Qiao, X., Chen, W., & Wang, S. (2021). Effect of proteolytic starter culture isolated from Chinese Dong fermented pork (Nanx Wudl) on microbiological, biochemical and organoleptic attributes in dry fermented sausages. Food Science & Human Wellness, 10(1), 13–22. https://doi.org/10.1016/j.fshw.2020.05.012 56. Mejri, L., Vásquez-Villanueva, R., Hassouna, M., Marina, M. L., & García, M. C. (2017). Identification of peptides with antioxidant and antihypertensive capacities by RP-HPLC-Q-TOF-MS in dry fermented camel sausages inoculated with different starter cultures and ripening times. Food Research International, 100, 708–716. https://doi.org/10.1016/j.foodres.2017.07.072 57. Yu, D., Feng, M. Q., & Sun, J. (2021). Influence of mixed starters on the degradation of proteins and the formation of peptides with antioxidant activities in dry fermented sausages. Food Control, 123, 107743. https://doi.org/10.1016/j.foodcont.2020.107743 58. Ayyash, M., Liu, S. Q., Al Mheiri, A., Aldhaheri, M., Raeisi, B., Al Nabulsi, A., Osaili, T., & Olaimat, A. (2019). In vitro investigation of health promoting benefits of fermented camel sausage by novel probiotic Lactobacillus plantarum: A comparative study with beef sausages. LWT, 99, 346–354. https://doi.org/10.1016/j.lwt.2018.09.084 59. Rahbar Saadat, Y., Yari Khosroushahi, A., & Pourghassem Gargari, B. (2019). A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydrate Polymers, 217, 79–89. https://doi.org/10.1016/j.carbpol.2019.04.025 60. Hilbig, J., Gisder, J., Prechtl, R. M., Herrmann, K., Weiss, J., & Loeffler, M. (2019). Influence of exopolysaccharide-producing lactic acid bacteria on the spreadability of fat-reduced raw fermented sausages (Teewurst). Food Hydrocolloids, 93, 422–431. https://doi.org/10.1016/j.foodhyd.2019.01.056 61. Velasco, L., Weiss, J., & Loeffler, M. (2021). Influence of microbial in situ heteropolysaccharide production on textural properties of raw fermented sausages (salami). Journal of Food Science and Technology, 58(3), 562–570. https://doi.org/10.1007/s13197-020-04568-2 62. Dertli, E., Yilmaz, M. T., Tatlisu, N. B., Toker, O. S., Cankurt, H., & Sagdic, O. (2016). Effects of in situ exopolysaccharide production and fermentation conditions on physicochemical, microbiological, textural and microstructural properties of Turkish-type fermented sausage (sucuk). Meat Science, 121, 156–165. https://doi.org/10.1016/j.meatsci.2016.06.008 63. Grasso, S., Brunton, N. P., Lyng, J. G., Lalor, F., & Monahan, F. J. (2014). Healthy processed meat products—Regulatory, reformulation and consumer challenges. Trends in Food Science & Technology, 39, 4–17. https://doi.org/10.1016/j.tifs.2014.06.006 64. Shan, L. C., Henchion, M., De Brún, A., Murrin, C., Wall, P. G., & Monahan, F. J. (2017). Factors that predict consumer acceptance of enriched processed meats. Meat Science, 133, 185–193. https://doi.org/10.1016/j.meatsci.2017.07.006 65. Hung, Y., Verbeke, W., & de Kok, T. M. (2016). Stakeholder and consumer reactions towards innovative processed meat products: Insights from a qualitative study about nitrite reduction and phytochemical addition. Food Control, 60, 690–698. https://doi.org/10.1016/j.foodcont.2015.09.002 66. Shan, L. C., Regan, Á., Monahan, F. J., Li, C., Lalor, F., Murrin, C., Wall, P. G., & McConnon, Á. (2017). Consumer preferences towards healthier reformulation of a range of processed meat products: A qualitative exploratory study. British Food Journal, 119(9), 2013–2026. https://doi.org/10.1108/BFJ-11-2016-0557 67. Zhang, Y. D., Jing, X., Chen, Z. J., & Wang, X. W. (2023). Effects of moderate-intensity pulsed electric field on the structure and physicochemical properties of foxtail millet (Setaria italica) prolamin. Cereal Chemistry, 100(2), 360–370. https://doi.org/10.1002/cche.10614 68. Hertzler, S. R., Lieblein-Boff, J. C., Weiler, M., & Allgeier, C. (2020). Plant proteins: Assessing their nutritional quality and effects on health and physical function. Nutrients, 12(12), 3704. https://doi.org/10.3390/nu12123704 69. Thakur, S., Pandey, A. K., Verma, K., Shrivastava, A., & Singh, N. (2023). Plant-based protein as an alternative to animal proteins: A review of sources, extraction methods and applications. International Journal of Food Science and Technology. https://doi.org/10.1111/ijfs.16663 70. Selvamuthukumaran, M., & Shi, J. (2017). Recent advances in extraction of antioxidants from plant by-products processing industries. Food Quality and Safety, 1(1), 61–81. https://doi.org/10.1093/fqs/fyx004 71. Pojic, M., Misan, A., & Tiwari, B. (2018). Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends in Food Science & Technology, 75, 93–104. https://doi.org/10.1016/j.tifs.2018.03.010 72. Bouchard, J., Malalgoda, M., Storsley, J., Malunga, L., Netticadan, T., & Thandapilly, S. J. (2022). Health benefits of cereal grain- and pulse-derived proteins. Molecules, 27(12), 3746. https://doi.org/10.3390/molecules27123746 73. Sim, S. Y. J., Akila, S. R. V., Chiang, J. H., & Henry, C. J. (2021). Plant proteins for future foods: A roadmap. Foods, 10(8), 1967. https://doi.org/10.3390/foods10081967 74. Nasrabadi, M. N., Doost, A. S., & Mezzenga, R. (2021). Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocolloids, 118, 106789. https://doi.org/10.1016/j.foodhyd.2021.106789 75. Baskinci, T., & Gul, O. (2023). Modifications to structural, techno functional and rheological properties of sesame protein isolate by high pressure homogenization. International Journal of Biological Macromolecules, 250, 126005. https://doi.org/10.1016/j.ijbiomac.2023.126005 76. Nosouhian, E., Hojjatoleslamy, M., Goli, M., Jafari, M., & Kiani, H. (2023). Investigating the functional properties of soy protein isolate conjugated with oxidized basil seed gum through Maillard reaction in food systems. Journal of Food Measurement and Characterization. https://doi.org/10.1007/s11694-023-02130-0 77. Cen, Q., Fan, J., Zhang, R., Chen, H. Y., Hui, F. Y., Li, J. M., & Qin, L. K. (2024). Impact of Ganoderma lucidum fermentation on the nutritional composition, structural characterization, metabolites, and antioxidant activity of soybean, sweet potato and Zanthoxylum pericarpium residues. Food Chemistry-X, 21, 101078. https://doi.org/10.1016/j.fochx.2023.101078 78. Gençdag, E., Görgüç, A., & Yilmaz, F. M. (2021). Recent advances in the recovery techniques of plant-based proteins from agro-industrial by-products. Food Reviews International, 37(4), 447–468. https://doi.org/10.1080/87559129.2019.1709203 79. Momen, S., Alavi, F., & Aider, M. (2021). Alkali-mediated treatments for extraction and functional modification of proteins: Critical and application review. Trends in Food Science & Technology, 110, 778–797. https://doi.org/10.1016/j.tifs.2021.02.052 80. Shrestha, S., Hag, L. V., Haritos, V. S., & Dhital, S. (2023). Lentil and Mungbean protein isolates: Processing, functional properties, and potential food applications. Food Hydrocolloids, 135, 108142. https://doi.org/10.1016/j.foodhyd.2022.108142 81. Schutyser, M. A. I., Pelgrom, P. J. M., van der Goot, A. J., & Boom, R. M. (2015). Dry fractionation for sustainable production of functional legume protein concentrates. Trends in Food Science & Technology, 45(2), 327–335. https://doi.org/10.1016/j.tifs.2015.04.013 82. Pulivarthi, M. K., Buenavista, R. M., Bangar, S. P., Li, Y. H., Pordesimo, L. O., Bean, S. R., & Siliveru, K. (2023). Dry fractionation process operations in the production of protein concentrates: A review. Comprehensive Reviews in Food Science and Food Safety. https://doi.org/10.1111/1541-4337.13237 83. Perovic, M. N., & Antov, M. G. (2022). The influence of enzymatic pretreatment of chickpea on properties of protein nanoparticles prepared by heat treatment. LWT - Food Science and Technology, 163, 113545. https://doi.org/10.1016/j.lwt.2022.113545 84. Bernardi, S., Lupatini-Menegotto, A. L., Kalschne, D. L., Flores, E. L. M., Bittencourt, P. R. S., Colla, E., & Canan, C. (2021). Ultrasound: A suitable technology to improve the extraction and techno-functional properties of vegetable food proteins. Plant Foods for Human Nutrition, 76(1), 1–11. https://doi.org/10.1007/s11130-021-00884-w 85. Eze, C. R., Kwofie, E. M., Adewale, P., Lam, E., & Ngadi, M. (2022). Advances in legume protein extraction technologies: A review. Innovative Food Science & Emerging Technologies, 82, 103199. https://doi.org/10.1016/j.ifset.2022.103199 86. Flores-Jiménez, N. T., Ulloa, J. A., Ortiz-Basurto, R. I., & Urías-Silvas, J. E. (2023). Application of high-intensity ultrasound to modify the rheological properties of a guamuchil Pithecellobium dulce (Roxb.) seed protein isolate. International Journal of Food Properties, 26(1), 739–751. https://doi.org/10.1080/10942912.2023.2183171 87. Orellana-Palacios, J. C., Hadidi, M., Boudechiche, M. Y., Ortega, M. L. S., Gonzalez-Serrano, D. J., Moreno, A., & Khanegah, A. M. (2022). Extraction optimization, functional and thermal properties of protein from cherimoya seed as an unexploited by-product. Foods, 11(22), 3694. https://doi.org/10.3390/foods11223694 88. Wang, F., Zhang, Y. Z., Xu, L., & Ma, H. (2020). An efficient ultrasound-assisted extraction method of pea protein and its effect on protein functional properties and biological activities. LWT - Food Science and Technology, 127, 109348. https://doi.org/10.1016/j.lwt.2020.109348 89. Purdi, T. S., Setiowati, A. D., & Ningrum, A. (2023). Ultrasound assisted extraction of Spirulina platensis protein: Physicochemical characteristic and techno-functional properties. Journal of Food Measurement and Characterization, 17(5), 5474–5486. https://doi.org/10.1007/s11694-023-02051-y 90. Li, W. J., Bian, Y. R., Chai, Y. L., Ding, H. X., Sheng, S., Wu, F. A., & Wang, J. (2021). Ultrasound-assisted extraction ameliorates the physicochemical properties of defatted mulberry seed protein to promote lipid production in Schizochytrium sp. SR21. Biomass Conversion and Biorefinery, 11(2), 489–502. https://doi.org/10.1007/s13399-020-00626-z 91. Arshad, R. N., Abdul-Malek, Z., Roobab, U., Munir, M. A., Naderipour, A., Qureshi, M. I., & Aadil, R. M. (2021). Pulsed electric field: A potential alternative towards a sustainable food processing. Trends in Food Science & Technology, 111, 43–54. https://doi.org/10.1016/j.tifs.2021.02.041 92. Zhang, K. H., Zang, M. W., Wang, S. W., Zhang, Z. Q., Li, D., Li, X. M. (2023). Development of meat analogs: Focus on the current status and challenges of regulatory legislation. Comprehensive Reviews in Food Science and Food Safety, 22(2), 1006–1029. https://doi.org/10.1111/1541-4337.13098 93. Käferböck, A., Smetana, S., de Vos, R., Schwarz, C., Toepfl, S., & Parniakov, O. (2020). Sustainable extraction of valuable components from Spirulina assisted by pulsed electric fields technology. Algal Research: Biomass, Biofuels and Bioproducts, 48, 101914. https://doi.org/10.1016/j.algal.2020.101914 94. Thongkong, S., Klangpetch, W., Unban, K., Tangjaidee, P., Phimolsiripol, Y., Rachtanapun, P., & Phongthai, S. (2023). Impacts of electroextraction using the pulsed electric field on properties of rice bran protein. Foods, 12(4), 835. https://doi.org/10.3390/foods12040835 95. Andreou, V., Psarianos, M., Dimopoulos, G., Tsimogiannis, D., & Taoukis, P. (2020). Effect of pulsed electric fields and high pressure on improved recovery of high-added-value compounds from olive pomace. Journal of Food Science, 85(5), 1500–1512. https://doi.org/10.1111/1750-3841.15122 96. Hou, B. W., Durrani, R., Delavault, A., Durand, E., Jiang, C. Y., Long, Y. Y., & Gao, F. (2022). Application of deep eutectic solvents in protein extraction and purification. Frontiers in Chemistry, 10, 912411. https://doi.org/10.3389/fchem.2022.912411 97. Silva, B. T., Demuner, A. J., Blank, D. E., Campos, M. G., & Mendes, T. A. O. (2023). Mucuna cinerea seeds: Levodopa extraction using deep eutectic solvent and its mammalian cell activity. Journal of the Brazilian Chemical Society. https://doi.org/10.21577/0103-5053.20230101 98. Lin, Z., Jiao, G. L., Zhang, J. Z., Celli, G. B., & Brooks, M. S. L. (2021). Optimization of protein extraction from bamboo shoots and processing wastes using deep eutectic solvents in a biorefinery approach. Biomass Conversion and Biorefinery, 11(6), 2763–2774. https://doi.org/10.1007/s13399-020-00614-3 99. Patra, A., Arun Prasath, V., & Pandiselvam, R. (2023). Deep eutectic solvent: An emerging trend for extraction of plant proteins. Journal of Molecular Liquids, 389, 122887. https://doi.org/10.1016/j.molliq.2023.122887 100. Zhou, Y., Wu, W., Zhang, N., Soladoye, O. P., Zhang, Y., & Fu, Y. (2022). Deep eutectic solvents as new media for green extraction of food proteins: Opportunity and challenges. Food Research International (Ottawa, Ont.), 161, 111842. https://doi.org/10.1016/j.foodres.2022.111842 101. Chen, Q. S., Chaihu, L. X., Yao, X. P., Cao, X. W., Bi, W. T., Lin, J., & Chen, D. D. Y. (2021). Molecular property-tailored soy protein extraction process using a deep eutectic solvent. ACS Sustainable Chemistry & Engineering, 9(30), 10083–10092. https://doi.org/10.1021/acssuschemeng.1c01848 102. Yue, J. X., Zhu, Z. B., Yi, J. H., Lan, Y., Chen, B. C., & Rao, J. J.(2021). Structure and functionality of oat protein extracted by choline chloride dihydric alcohol deep eutectic solvent and its water binary mixtures. Food Hydrocolloids, 112, 106330. https://doi.org/10.1016/j.foodhyd.2020.106330 103. Lu, X. W., Li, W. J., Wang, Q., Wang, J., & Qin, S. (2023). Progress on the extraction, separation, biological activity, and delivery of natural plant pigments. Molecules, 28(14), 5364. https://doi.org/10.3390/molecules28145364 104. Lubek-Nguyen, A., Ziemichód, W., & Olech, M. (2022). Application of enzyme-assisted extraction for the recovery of natural bioactive compounds for nutraceutical and pharmaceutical applications. Applied Sciences, 12(7), 3232. https://doi.org/10.3390/app12073232 105. Coniglio, R. O., Díaz, G., Barua, R. C., Albertó, E., & Zapata, P. D. (2022). Enzyme-assisted extraction of phenolic compounds and proteins from sugarcane bagasse using a low-cost cocktail from Auricularia fuscosuccinea. International Journal of Food Science and Technology, 57(2), 1114–1121. https://doi.org/10.1111/ijfs.15477 106. Koysuren, B., Oztop, M. H., & Mazi, B. G. (2021). Sesame seed as an alternative plant protein source: A comprehensive physicochemical characterization study for alkaline, salt, and enzyme-assisted extracted samples. International Journal of Food Science and Technology, 56(11), 5471–5484. https://doi.org/10.1111/ijfs.15229 107. Hildebrand, G., Poojary, M. M., O’Donnell, C., Lund, M. N., Garcia Vaquero, M., & Tiwari, B. K. (2020). Ultrasound-assisted processing of Chlorella vulgaris for enhanced protein extraction. Journal of Applied Phycology, 32(3), 1709–1718. https://doi.org/10.1007/s10811-020-02105-4 108. Zhao, J. H., Liu, Y. Y., Shen, C., Lai, O. M., Tan, C. P., & Cheong, L. Z. (2023). Enhanced storage stability and in-vitro digestibility of powdered-solid lipid nanoparticles with high-algae oil load. Food Bioscience, 55, 102810. https://doi.org/10.1016/j.fbio.2023.102810 109. Sun, Y. F., Zhong, M. M., Wu, L. C., Huang, Y. Y., Li, Y., & Qi, B. K. (2022). Effects of ultrasound-assisted salt (NaCl) extraction method on the structural and functional properties of Oleosin. Food Chemistry, 372, 131238. https://doi.org/10.1016/j.foodchem.2021.131238 110. Görgüç, A., Özer, P., & Yilmaz, F. M. (2020). Simultaneous effect of vacuum and ultrasound-assisted enzymatic extraction on the recovery of plant protein and bioactive compounds from sesame bran. Journal of Food Composition and Analysis, 87, 103424. https://doi.org/10.1016/j.jfca.2020.103424 111. Steinbruch, E., Wise, J., Levkov, K., Chemodanov, A., Israel, A., Livney, Y. D., & Golberg, A. (2023). Enzymatic cell wall degradation combined with pulsed electric fields increases yields of water-soluble-protein extraction from the green marine macroalga Ulva sp. Innovative Food Science & Emerging Technologies, 84, 103231. https://doi.org/10.1016/j.ifset.2022.103231 112. Robin, A., Kazir, M., Sack, M., Israel, A., Frey, W., Mueller, G., & Golberg, A. (2018). Functional protein concentrates extracted from the green marine macroalga Ulva sp., by high voltage pulsed electric fields and mechanical press. ACS Sustainable Chemistry & Engineering, 6(11), 13696–13705. https://doi.org/10.1021/acssuschemeng.8b01089 113. Carullo, D., Donsì, F., Ferrari, G., & Pataro, G. (2021). Extraction improvement of water-soluble compounds from Arthrospira platensis through the combination of high-shear homogenization and pulsed electric fields. Algal Research: Biomass, Biofuels and Bioproducts, 57, 102341. https://doi.org/10.1016/j.algal.2021.102341 114. Olalere, O. A., & Gan, C. Y. (2023). Extractability of defatted wheat germ protein and their functionalities in a deep eutectic solvent (DES)-microwave extraction approach compared to conventional processing. Sustainable Chemistry and Pharmacy, 32, 101002. https://doi.org/10.1016/j.scp.2023.101002 115. Naseri, A., Marinho, G. S., Holdt, S. L., Bartela, J. M., & Jacobsen, C. (2020). Enzyme-assisted extraction and characterization of protein from red seaweed Palmaria palmata. Algal Research: Biomass, Biofuels and Bioproducts, 47, 101849. https://doi.org/10.1016/j.algal.2020.101849 116. Santhosh, R., Babu, D. M., Thakur, R., Nath, D., Hoque, M., Gaikwad, K. K., & Sarkar, P. (2024). Effect of atmospheric cold plasma treatment on structural, thermal, and mechanical properties of pea protein isolate edible films. Sustainable Chemistry and Pharmacy, 37, 101398. https://doi.org/10.1016/j.scp.2023.101398 117. Zhang, L. M., Liu, Z. L., Sun, Y., Wang, X. M., & Li, L. (2020). Combined antioxidant and sensory effects of active chitosan/zein film containing α tocopherol on Agaricus bisporus. Food Packaging and Shelf Life, 24, 100470. https://doi.org/10.1016/j.fpsl.2020.100470 118. Bremenkamp, I., & Sousa-Gallagher, M. J. (2024). Design and development of an edible coating for a ready-to-eat fish product. Polymers, 16(3), 346. https://doi.org/10.3390/polym16030346 119. Zhang, Y. D., Jing, X., Chen, Z. J., & Wang, X. W. (2023). Effects of moderate-intensity pulsed electric field on the structure and physicochemical properties of foxtail millet (Setaria italica) prolamin. Cereal Chemistry, 100(2), 360–370. https://doi.org/10.1002/cche.10614 120. Echegaray, N., Goksen, G., Kumar, M., Sharma, R., Hassoun, A., Lorenzo, J. M., & Dar, B. N. (2023). A critical review on protein-based smart packaging systems: Understanding the development, characteristics, innovations, and potential applications. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2023.2202256 121. Liu, M. Z., Zhang, X. H., Wei, A., Li, H. Y., Zhang, H. J., Zheng, L., & Wang, J. (2024). Protein-based active films: Raw materials, functions, and food applications. Comprehensive Reviews in Food Science and Food Safety, 23(2). https://doi.org/10.1111/1541-4337.13302 122. Chen, M. L., Ning, P., Jiao, Y., Xu, Z., & Cheng, Y. H. (2021). Extraction of antioxidant peptides from rice dreg protein hydrolysate via an angling method. Food Chemistry, 337, 128069. https://doi.org/10.1016/j.foodchem.2020.128069 123. Hou, D. Z., Feng, Q. Q., Niu, Z. T., Wang, L., Yan, Z., & Zhou, S. M. (2023). Promising mung bean proteins and peptides: A comprehensive review of preparation technologies, biological activities, and their potential applications. Food Bioscience, 55, 102972. https://doi.org/10.1016/j.fbio.2023.102972 124. Ayala-Niño, A., Castañeda-Ovando, A., Jaimez-Ordaz, J., Rodríguez Serrano, G. M., Sánchez-Franco, J. A., & González-Olivares, L. G. (2022). Novel bioactive peptide sequences released by in vitro digestion of proteins isolated from Amaranthus hypochondriacus. Natural Product Research, 36(13), 3485–3488. https://doi.org/10.1080/14786419.2020.1862837 125. Xu, Y., Sun, L. P., Zhuang, Y. L., Gu, Y., Cheng, G. G., Fan, X. J., & Liu, H. T. (2023). Protein-stabilized emulsion gels with improved emulsifying and gelling properties for the delivery of bioactive ingredients: A review. Foods, 12(14), 42703. https://doi.org/10.3390/foods12142703 126. Ajayi, F. F., Mudgil, P., Gan, C. Y., & Maqsood, S. (2021). Identification and characterization of cholesterol esterase and lipase inhibitory peptides from amaranth protein hydrolysates. Food Chemistry-X, 12, 100165. https://doi.org/10.1016/j.fochx.2021.100165 127. Cabanos, C., Matsuoka, Y., & Maruyama, N. (2021). Soybean proteins/peptides: A review on their importance, biosynthesis, vacuolar sorting, and accumulation in seeds. Peptides, 143, 170598. https://doi.org/10.1016/j.peptides.2021.170598 128. Tok, K., Moulahoum, H., Kocazorbaz, E. K., & Zihnioglu, F. (2021). Bioactive peptides with multiple activities extracted from barley (Hordeum vulgareL.) grain protein hydrolysates: Biochemical analysis and computational identification. Journal of Food Processing and Preservation, 45(1), 15024. https://doi.org/10.1111/jfpp.15024 129. Yiu, C. C. Y., Liang, S. W., Mukhtar, K., Kim, W., Wang, Y., & Selomulya, C. (2023). Food emulsion gels from plant-based ingredients: Formulation, processing, and potential applications. Gels, 9(5), 366. https://doi.org/10.3390/gels9050366 130. Xu, Y., Yang, Y., Ma, C. M., Bian, X., Liu, X. F., Wang, Y., & Zhang, N. (2023). Characterization of the structure, antioxidant activity, and hypoglycemic activity of soy (Glycine max L.) protein hydrolysates. Food Research International, 173, 113473. https://doi.org/10.1016/j.foodres.2023.113473 131. Li, Y. H., Wang, J., Ying, R. F., Huang, M. G., & Hayat, K. (2024).Protein-stabilized Pickering emulsion interacting with inulin, xanthan gum, and chitosan: Rheological behavior and 3D printing. Carbohydrate Polymers, 326, 121658. https://doi.org/10.1016/j.carbpol.2023.121658 132. Lingiardi, N., Galante, M., & Spelzini, D. (2023). Emulsion gels based on quinoa protein hydrolysates, alginate, and high-oleic sunflower oil: Evaluation of their physicochemical and textural properties. Food Biophysics. https://doi.org/10.1007/s11483-023-09817-3 133. Lin, D. Q., Kelly, A. L., & Miao, S. (2021). Formation and creaming stability of alginate/micro-gel particle-induced gel-like emulsions stabilized by soy protein isolate. Food Hydrocolloids, 121, 107040. https://doi.org/10.1016/j.foodhyd.2021.107040 134. Choi, M., Choi, H. W., Kim, H., Hahn, J., & Choi, Y. J. (2023). Mimicking animal adipose tissue using a hybrid network-based solid-emulsion gel with soy protein isolate, agar, and alginate. Food Hydrocolloids, 145, 109043. https://doi.org/10.1016/j.foodhyd.2023.109043 135. Hoskin, R. T., Grace, M. H., Xiong, J., & Lila, M. A. (2023). Spray drying microencapsulation of blackcurrant and cocoa polyphenols using underexplored plant-based protein sources. Journal of Food Science, 88(6), 2665–2678. https://doi.org/10.1111/1750-3841.16590 136. Ismail, M. F., Lim, S. M., Lim, F. T., & Ramasamy, K. (2023). In vitro and in vivo characterization of Lactiplantibacillus plantarum LAB12 in pea protein alginate microcapsules. Probiotics and Antimicrobial Proteins. https://doi.org/10.1007/s12602-023-10171-6 137. Lei, Y. L., & Lee, Y. (2024). Nanoencapsulation and delivery of bioactive ingredients using zein nanocarriers: Approaches, characterization, applications, and perspectives. Food Science and Biotechnology. https://doi.org/10.1007/s10068-023-01489-6 138. Silva, P. M., Gonçalves, C., Pastrana, L. M., Coimbra, M. A., Vicente, A. A., & Cerqueira, M. A. (2023). Recent advances in oral delivery systems of resveratrol: Foreseeing their use in functional foods. Food & Function, 14(23), 10286–10313. https://doi.org/10.1039/d3fo03065b 139. Sun, B. S., Zhang, B. Y., Sun, L. L., Zhou, Y. W., Zhang, G. J., Zhang, F., & Xu, B. C. (2023). A review on effective encapsulation and release strategy of umami peptides. International Journal of Food Engineering, 19(9), 361–376. https://doi.org/10.1515/ijfe-2023-0117 140. Zhao, J. H., Liu, Y. Y., Shen, C., Lai, O. M., Tan, C. P., & Cheong, L. Z. (2023). Enhanced storage stability and in-vitro digestibility of powdered-solid lipid nanoparticles with high-algae oil load. Food Bioscience, 55, 102810. https://doi.org/10.1016/j.fbio.2023.102810 141. Islam, F., Ali, Y. A., Imran, A., Afzaal, M., Zahra, S. M., Fatima, M., & Shah, M. A. (2023). Vegetable proteins as encapsulating agents: Recent updates and future perspectives. Food Science & Nutrition, 11(4), 1705–1717. https://doi.org/10.1002/fsn3.3234 142. Wu, K. W., Shi, Z. Y., Liu, C. X., Su, C., Zhang, S. X., & Yi, F. P. (2022). Preparation of Pickering emulsions based on soy protein isolate-tannic acid for protecting aroma compounds and their application in beverages. Food Chemistry, 390, 133182. https://doi.org/10.1016/j.foodchem.2022.133182 143. Quiroz, J. Q., Velazquez, V., Corrales-Garcia, L. L., Torres, J. D., Delgado, E., Ciro, G., & Rojas, J. (2020). Use of plant proteins as microencapsulating agents of bioactive compounds extracted from annatto seeds (Bixa orellana L.). Antioxidants, 9(4), 310. https://doi.org/10.3390/antiox900310 144. Le Priol, L., Dagmey, A., Morandat, S., Saleh, K., El Kirat, K., & Nesterenko, A. (2019). Comparative study of plant protein extracts as wall materials for the improvement of the oxidative stability of sunflower oil by microencapsulation. Food Hydrocolloids, 95, 105–115. https://doi.org/10.1016/j.foodhyd.2019.04.026 145. Zielinska, M., Sadowski, P., & Błaszczak, W. (2015). Freezing/thawing and microwave-assisted drying of blueberries (Vaccinium corymbosum L.). LWT Food Science and Technology, 62(1), 555–563. https://doi.org/10.1016/j.lwt.2014.07.024 146. Bozkir, H., & Ergün, A. R. (2020). Effect of sonication and osmotic dehydration applications on the hot air drying kinetics and quality of persimmon. LWT, 131, 109704. https://doi.org/10.1016/j.lwt.2020.109704 147. Paciulli, M., Medina-Meza, I. G., Chiavaro, E., & Barbosa-Cánovas, G. V. (2016). Impact of thermal and high pressure processing on quality parameters of beetroot (Beta vulgaris L.). LWT - Food Science and Technology, 68, 98–104. https://doi.org/10.1016/j.lwt.2015.12.029 148. Alvarez-Parrilla, E., de la Rosa, L. A., Amarowicz, R., & Shahidi, F. (2011). Antioxidant activity of fresh and processed Jalapeno and Serrano peppers. Journal of Agricultural and Food Chemistry, 59(1), 163–173. https://doi.org/10.1021/jf103420w 149. de Souza, V. R., Pereira, P. A. P., da Silva, T. L. T., de Oliveira Lima, L. C., Pio, R., & Queiroz, F. (2014). Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry, and sweet cherry fruits. Food Chemistry, 156, 362–368. https://doi.org/10.1016/j.foodchem.2014.02.013 150. Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292 151. AOAC. (2006). Official methods of analysis (18th ed.). Association of Official Analytical Chemists. 152. Gong, H., Wang, T., Hua, Y., Wang, W. D., Shi, C., Xu, H. X., Li, L. L., Zhang, D. P., Sun, Y. E., & Yu, N. N. (2022). Garlic varieties and drying methods affected the physical properties, bioactive compounds, and antioxidant capacity of dried garlic powder. CyTA - Journal of Food, 20(1), 111–119. https://doi.org/10.1080/19476337.2022.2093400 153. Amerine, M., Pangborn, R., & Roessler, E. (2013). Principles of sensory evaluation of food. Academic Press.
Располагается в коллекциях:181 - "Харчові технології" (Магістри)

Файлы этого ресурса:
Файл Описание РазмерФормат 
2024_M_462_181z-TM-13m_Filon_A_M.pdf
  Restricted Access
15.69 MBAdobe PDFПросмотреть/Открыть    Запрос копии


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.