Please use this identifier to cite or link to this item: https://repo.btu.kharkov.ua//handle/123456789/5607
Full metadata record
DC FieldValueLanguage
dc.contributor.authorСметанкіна, Н. В.-
dc.date.accessioned2022-08-24T19:02:54Z-
dc.date.available2022-08-24T19:02:54Z-
dc.date.issued2017-
dc.identifier.citationСметанкіна Н. В. Аналіз міцності багатошарового оскління транспортних засобів при ударному навантаженні. Технічний сервіс агропромислового, лісового та транспортного комплексів. 2017. № 8. С. 114-120uk_UA
dc.identifier.urihttps://repo.btu.kharkov.ua//handle/123456789/5607-
dc.description.abstractЗапропоновано метод розрахунку міцності багатошарового оскління транспортних засобів при ударному навантаженні. Модель оскління базується на уточненій теорії багатошарових оболонок. Запропоновано п’ятишарове оскління, яке відповідає вимогам безпеки та надійності. Чисельні результати добре узгоджуються з експериментальними даними.uk_UA
dc.description.abstractThe paper presents an effective analytical method for investigation of dynamical strength of a multilayer glazing for flight and land vehicles. The multilayer glazing is considered as a constant-thickness non-closed cylindrical multilayer shell. In the coordinate surface, it occupies the complex domain limited by the boundary. The paper presents an effective analytical method for investigation of dynamical strength of a multilayer glazing for flight and land vehicles. The multilayer glazing is considered as a constant-thickness non-closed cylindrical multilayer shell. In the coordinate surface, it occupies the complex domain limited by the boundary. An indenter with a semispherical end is dropped onto the shell from some height. Contact approach is found by solving Hertzian problem on ball indentation into an elastic semispace. The behaviour of the multilayer shell is described by the first-order theory accounting for transverse shear strain, thickness reduction and normal element rotation inertia in each layer. The equations of motion of the shell affected by impact load, well as the respective boundary conditions are derived by the ariational principle. The analytical solution of the problem is obtained by the immersion method. According to this method, a non-closed cylindrical multilayer shell is immersed into an auxiliary enveloping cylindrical shell with the same composition of layers. To satisfy actual boundary conditions, additional distributed compensating loads, the intensity of which are to be found, are applied to the auxiliary shell over the boundary. Displacements and loads are expanded in the auxiliary shel domain in trigonometric series for functions satisfying simply supported conditions. The compensating loads are expanded into a series along the boundary The method potentialities are demonstrated by calculating the stresses in a five-layer glazing. Experiments are based on the dynamic wide-range strain measurement technique. A good match of theoretical and experimental results confirms the feasibility and effectiveness of the method offered. An indenter with a semispherical end is dropped onto the shell from some height. Contact approach is found by solving Hertzian problem on ball indentation into an elastic semispace. The behaviour of the multilayer shell is described by the first-order theory accounting for transverse shear strain, thickness reduction and normal element rotation inertia in each layer. The equations of motion of the shell affected by impact load, well as the respective boundary conditions are derived by the variational principle. The analytical solution of the problem is obtained by the immersion method. According to this method, a non-closed cylindrical multilayer shell is immersed into an auxiliary enveloping cy lindrical shell with the same composition of layers. To satisfy actual boundary conditions, additional distributed compensating loads, the intensity of which are to be found, are applied to the auxiliary shell over the boundar. Displacements and loads are expanded in the auxiliary shell domain in trigonometric series for functions satisfying simply supported conditions. The compensating loads are expanded into a series along the boundary. The method potentialities are demonstrated by calculating the stresses in a five-layer glazing. Experiments are based on the dynamic wide-range strain measurement technique. A good match of theoretical and experimental results confirms the feasibility and effectiveness of the method offered.uk_UA
dc.language.isouk_UAuk_UA
dc.publisherХарківuk_UA
dc.relation.ispartofseriesТехнічний сервіс агропромислового, лісового та транспортного комплексів;№ 8-
dc.subjectбагатошарове осклінняuk_UA
dc.subjectударне навантаженняuk_UA
dc.subjectдинамічна міцністьuk_UA
dc.subjectнадійністьuk_UA
dc.subjectmultilayer glazinguk_UA
dc.subjectimpact loadinguk_UA
dc.subjectdynamical strengthuk_UA
dc.subjectreliabilityuk_UA
dc.titleАналіз міцності багатошарового оскління транспортних засобів при ударному навантаженніuk_UA
dc.title.alternativeStrength analysis of multilayer glazing of vehicles at impact loadinguk_UA
dc.typeArticleuk_UA
Appears in Collections:№ 8

Files in This Item:
File Description SizeFormat 
16.pdf355.73 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.