Please use this identifier to cite or link to this item:
https://repo.btu.kharkov.ua/handle/123456789/61306
Title: | Використання проєктного підходу для прогнозування енерговитрат домогосподарств на місцевому рівні |
Other Titles: | Using a project-based approach to forecast household energy consumption at the local level |
Authors: | Хуснутдінов, Рінат Русланович |
metadata.dc.contributor.advisor: | Власенко, Т. В. |
metadata.dc.contributor.affiliation: | Державний біотехнологічний університет Кафедра менеджменту, бізнесу і адміністрування |
Keywords: | проєктний менеджмент;проєктний менеджмент;машинне навчання;project management;innovation management;machine learning |
Issue Date: | 2024 |
Publisher: | Харків: ДБТУ |
Citation: | Хуснутдінов Р. Р. Використання проєктного підходу для прогнозування енерговитрат домогосподарств на місцевому рівні: кваліфікаційна (магістерська) робота на здобуття ступеня вищої освіти «магістр»: 281 Публічне управління та адміністрування; наук. керівник Т. В. Власенко. Харків: ДБТУ, 2024. 74 с. |
Abstract: | Основною метою роботи є розробка та впровадження ефективної системи прогнозування енерговитрат домогосподарств на місцевому рівні з використанням проєктного підходу. Дослідження спрямоване на адаптацію найкращих практик європейського досвіду, зокрема принципів Green Deal, для створення енергоефективних стратегій управління, що сприятимуть зменшенню витрат, підвищенню екологічної стійкості та покращенню якості життя місцевих громад.
Об’єктом роботи є домогосподарства, що імплементують інноваційні проекти.
Предметом роботи є процеси імплементації інноваційних проектів зі збереження електроенергії на малих підприємствах.
Наукова новизна результатів роботи полягає у доповненні теоретичних, практичних складових систем прогнозування енерговитрат домогосподарств на місцевому рівні з використанням проєктного підходу.
У кваліфікаційній роботі:
У першому розділі розглянуто менеджмент проєктів з енергоефективності , загальні відомості про кліматичну нейтральність в публічному секторі, проблема енергетичної стійкості в домогосподарствах.
У другому розділі розглянуто інноваційний підхід до енергоефективності будівель територіальних громад, вплив зміни клімату на енергоефективність будівель територіальних громад, аналіз факторів, що впливають на енергоспоживання.
У третьому розділі розглянуто сучасні тенденції енергоменеджменту в будівлях територіальних громад та проведено прогнозування електроспоживання будівлі територіальної громади з використанням сервісу AWS Canvas.
У висновках та пропозиціях запропоновані рекомендації для підприємств по імплементації інноваційних проектів на підприємствах. The main objective of the work is to develop and implement an effective system for forecasting household energy consumption at the local level using a project-based approach. The study aims to adapt the best practices of European experience, in particular the principles of the Green Deal, to create energy-efficient management strategies that will reduce costs, increase environmental sustainability, and improve the quality of life of local communities. The object of the study is households implementing innovative projects. The subject of the work is the processes of implementing innovative projects for energy conservation in small enterprises. The scientific novelty of the results of the work is to complement the theoretical and practical components of household energy consumption forecasting systems at the local level using a project approach. The qualification work: The first chapter discusses energy efficiency project management, general information about climate neutrality in the public sector, and the problem of energy sustainability in households. The second section discusses an innovative approach to the energy efficiency of local community buildings, the impact of climate change on the energy efficiency of local community buildings, and an analysis of factors affecting energy consumption. The third section considers current trends in energy management in local community buildings and forecasts the electricity consumption of a local community building using the AWS Canvas service. The conclusions and proposals offer recommendations for enterprises on the implementation of innovative projects at enterprises. |
URI: | https://repo.btu.kharkov.ua//handle/123456789/61306 |
metadata.dcterms.references: | 1. Towards EU Climate Neutrality Progress, Policy Gaps and Opportunities. European Scientific Advisory Board on Climate Change. Assessment Report 2024, European Scientific Advisory Board on Climate Change, 2024. Available online: https://climate-advisory-board.europa.eu/reports-and-publications/towards-eu climate-neutrality-progress-policy-gaps-and-opportunities (accessed on 15 October2024). 2. Topics European Parliament. Available online: www.europarl.europa.eu/topics/en/article/20190926STO62270/what-is-carbon neutrality-and-how-can-it-be-achieved-by-2050 (accessed on 14 October 2024). 3. European Concil. Council of the European Union. Available online: https://www.consilium.europa.eu/en/5-facts-eu-climate-neutrality/ (accessed on 14 October 2024). 4. Directive (EU) 2023/1791 of THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 13 September 2023 on Energy Efficiency and Amending Regulation (EU) 2023/955. Available online: https://eur-lex.europa.eu/legal content/EN/TXT/?uri=OJ%3AJOL_2023_231_R_0001&qid=1695186598766 (accessed on 13 October 2024). 5. Directive 2010/31/EU of The European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings. Available online: https://eur lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02010L0031-20210101 (accessed on 13 October 2024). 6. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off. J. Eur. Union 2008, 29, 169–212. 7. National Aeronautics and Space Administration Goddard Institute for Space Studies. Available online: https://data.giss.nasa.gov/ (accessed on 14 October 2024). 8. Scripps Institution of Oceanography at UC San Diego. Available online: https://keelingcurve.ucsd.edu/ (accessed on 14 October 2024). 9. Laurikka, H. The impact of climate policy on heat and power capacity investment decisions. In Emissions Trading and Business; Antes, R., Hansjürgens, B., Letmathe, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2006. 10. Energy, Climate change, Environment, The European Union. Available online: https://climate.ec.europa.eu/climate-change/causes-climate-change_en (accessed on 15 October 2024). 11. Liu, L.; He, G.; Wu, M.; Liu, G.; Zhang, H.; Chen, Y.; Shen, J.; Li, S. Climate change impacts on planned supply–demand match in global wind and solar energy systems. Nat. Energy 2023, 8, 870–880. 12. International Energy Agency, World Energy Outlook 2023. Available online: www.iea.org (accessed on 14 October 2024). 13. BP Energy Outlook 2023 & 2024 Edition. Available online: https://www.bp.com/en/global/corporate/energy-economics/energy-outlook.html (accessed on 15 October 2024). 14. Chen, L.; Msigwa, G.; Yang, M.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, S. Strategies to achieve a carbon neutral society: A review. Environ. Chem. Lett. 2022, 20, 2277–2310. 15. Liu, Z.; Deng, Z.; Davis, S.J.; Ciais, P. Global carbon emissions in 2023. Nat. Rev. Earth Environ. 2024, 5, 253–254. 16. Nocoń, A. Towards climate neutrality in mining and energy companies in Poland—An approach to their financing. Miner. Resour. Manag. 2022, 38, 69–89. 17. Eurostat Statistics Exlpained. Energy Statistics—An Overview. Available online: https://ec.europa.eu/eurostat/statistics explained/index.php?title=Energy_statistics_-_an_overview#Final_energy_consumption (accessed on 6 October 2024). 18. Wang, Y.; Wang, R.; Tanaka, K.; Ciais, P.; Penuelas, J.; Balkanski, Y.; Sardans, J.; Hauglustaine, D.; Liu, W.; Xing, X.; et al. Accelerating the energy transition towards photovoltaic and wind in China. Nature 2023, 619, 761–767. 19. Krause, J.; Yugo, M.; Samaras, Z.; Edwards, S.; Fontaras, G.; Dauphin, R.; Prenninger, P.; Neugebauer, S. Well-to-wheels scenarios for 2050 carbon-neutral road transport in the EU. J. Clean. Prod. 2024, 443, 141084. 20. Shirizadeh, B.; Ailleret, A.; Cartry, C.; Douguet, S.; Gehring, T.; Maden, S.; Mais, B.; Mross, L.; Theis, J.; Cabot, C.; et al. Climate neutrality in European heavy-duty road transport: How to decarbonise trucks and buses in less than 30 years? Energy Convers. Manag. 2024, 309, 118438. 21. Bhakta, S.; Kundu, B.A. Review of Thermoelectric Generators in Automobile Waste Heat Recovery Systems for Improving Energy Utilization. Energies 2024, 17, 1016. 22. Wang, Q.; Fan, J.; Kwan, M.P.; Zhou, K.; Shen, G.; Li, N.; Wu, B.; Lin, J. Examining energy inequality under the rapid residential energy transition in China through household surveys. Nat. Energy 2023, 8, 251–263. 23. PN-EN 12831:2017; Heating Installations in Buildings. Method of Calculating the Design Heat Load. Polish Committee for Standardization: Warsaw, Poland, 2017. 24. PN-EN ISO 14683:2017-09; Thermal Bridges in Building Construction—Linear Thermal Transmittance—Simplified Methods and Default Values. International Organization for Standardization: Geneva, Switzerland, 2017. 25. PN-EN ISO 52016-1:2017; Energy Performance of Buildings-Energy Demand for Heating and Cooling, Internal Temperatures and Sensible and Latent Heat Loads-Part 1: Calculation Procedures. International Organization for Standardization: Geneva, Switzerland, 2017. 26. PN-EN ISO 6946:2017-10; Building Components and Building Elements—Thermal Resistance and Thermal Transmittance—Calculation Methods. International Organization for Standardization: Geneva, Switzerland, 2017. 27. Cengel, Y.A. Heat Transfer. In A Practical Approach, 2nd ed.; McGraw Hill Science/Engineering/Math: New York, NY, USA, 2002. 28. Babiarz, B.; Szymański, W. Introduction to the Dynamics of Heat Transfer in Buildings. Energies 2020, 13, 6469. 29. Regulation of the Minister of Infrastructure of April 12, 2002, on the Technical Conditions to Be Met by Buildings and Their Location (In Polish). Journal of Laws No. 75, Item 690, as Amended. Available online: https://sip.lex.pl/akty prawne/dzu-dziennik-ustaw/warunki-techniczne-jakim-powinny-odpowiadac budynki-i-ich-usytuowanie-16964625 (accessed on 15 July 2024). 30. Regulation of the Minister of Infrastructure and Development of 27 February 2015 on the methodology for determining the energy performance of a building or part of a building and energy performance certificates (In Polish). Journal of Laws of 18 March 2015, item 376, as Amended. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20150000376 (accessed on 15 July 2024). 31. Sarbu, I.; Dorca, A. Review on heat transfer analysis in thermal energy storage using latent heat storage systems and phase change materials. Int. J. Energy Res. 2019, 43, 29–64. 32. Yu, R.; Manjavacas, A.; García de Abajo, F.J. Ultrafast radiative heat transfer. Nat. Commun. 2017, 8, 2. 33. Basok, B.; Davydenko, B.; Pavlenko, A.; Novikov, V.; Novitska, M. The influence of geometric characteristics of the buildings facades on the heat transfer to the wind flow. J. New Technol. Environ. Sci. 2021, 5, 1–50. 34. Jezierski, W.; Sadowska, B.; Pawłowski, K. Impact of Changes in the Required Thermal Insulation of Building Envelope on Energy Demand, Heating Costs, Emissions, and Temperature in Buildings. Energies 2021, 14, 56. 35. Dylewski, R. Optimal Thermal Insulation Thicknesses of External Walls Based on Economic and Ecological Heating Cost. Energies 2019, 12, 3415. 36. Xue, Y.; Ge, Z.; Du, X.; Yang, L. On the Heat Transfer Enhancement of Plate Fin Heat Exchanger. Energies 2018, 11, 1398. 37. Emmel, M.G.; Abadie, M.O.; Mendes, N. New external convective heat transfer coefficient correlations for isolated low-rise buildings. Energy Build. 2007, 39,335–342. 38. Clarke, J.A. Energy Simulation in Building Design; Butterworth Heinemann: Oxford, UK, 2001. 39. Gerlich, V. Modelling of Heat Transfer in Buildings. In Proceedings of the 25th Conference on Modelling and Simulation, Krakow, Poland, 7–10 June 2011. 40. Simões, N.; Prata, J.; Tadeu, A. 3D Dynamic Simulation of Heat Conduction through a Building Corner Using a BEM Model in the Frequency Domain. Energies 2019, 12, 4595. 41. Act of 10 April 1997 on the Energy Law. Available online: www.ure.gov.pl/download.php?s=2&id=2 (accessed on 2 October 2018). 42. Wierzbiński, M. Management aspects of the district heating systems’ transformation towards climate neutrality. In Accounting and Business in a Sustainable Post-Covid World: New Perspectives and Challenges; Dyczkowska, J., Ed.; Publishing House of Wroclaw University of Economics and Business: Wroclaw, Poland, 2022; pp. 136–163. 43. Babiarz, B. Aspects of Heat Supply Security Management Using Elements of Decision Theory. Energies 2018, 11, 2764. 44. To, L.S.; Bruce, A.; Munro, P.; Santagata, E.; MacGill, I.; Rawali, M.; Raturi, A. A research and innovation agenda for energy resilience in Pacific Island Countries and Territories. Nat. Energy 2021, 6, 1098–1103. 45. Future-Proofing Energy Systems: The Energy Resiliency Framework (ARUP, 2019). Available online: https://www.arup.com/energy-resilience-framework (accessed on 15 July 2024). 46. Tychanicz-Kwiecień, M.; Grosicki, S. Research methods in the study of heat transfer coefficient during flow in minichannels. J. Mech. Energy Eng. 2021, 5, 59–68. 47. Bergles, A.E. Techniques to enhance heat transfer. In Handbook of Heat Transfer, 3rd ed.; McGraw-Hill: New York, NY, USA, 1998; Volume 11, pp. 1–11, 76. 48. Mousavi Ajarostaghi, S.S.; Zaboli, M.; Javadi, H.; Badenes, B.; Urchueguia, J.F. A Review of Recent Passive Heat Transfer Enhancement Methods. Energies 2022, 15, 986. 49. DIRECTIVE 2009/72/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 13 July 2009 concerning common rules for the internal market in electricity and repealing Directive 2003/54/EC. Available online: https://eur lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32009L0072 (accessed on 15 July 2024). 50. Energy, Climate Change, Environment. Energy Poverty. Available online: https://energy.ec.europa.eu/topics/markets-and-consumers/energy-consumers-and prosumers/energy-poverty_en?prefLang=pl (accessed on 14 August 2024). 51. Electricity Prices for Household Consumers-bi-Annual Data (from 2007 Onwards). Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_pc_204/default/table?lang=en&fbclid=IwAR2Xh0ofim1iAz7lP uhxMbC_UvOlpxVhV0hikFvh328cWRg5zc69olZ0Nw (accessed on 14 August2024). 52. Electricity Prices for Non-Household Consumers- bi-Annual Data (from 2007 Onwards). Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_pc_205/default/table?lang=en&fbclid=IwAR275HJW27_oNv226us5JcnLvzFjmg2ZYdozIe5MQx2uqAAfKOef7iFAprI (accessed on 14 August 2024). 53. Housing Cost Overburden Rate by Tenure Status-EU-SILC Survey. Available online: https://ec.europa.eu/eurostat/databrowser/view/ilc_lvho07c/default/table?lang=en&fbclid=IwAR1xjf9Po5UUrwXNV48jYc1fYszqsLJbzVZ_QXn1o3QaqfP_XZl4YpP0Rzg (accessed on 14 August 2024). 54. People at Risk of Poverty or Social Exclusion. Available online: https://ec.europa.eu/eurostat/databrowser/view/tipslc10/default/table?lang=en&fbclid=IwAR0SrEK5ecUp6nF4XbHpqmKNj483oOdbxRJob36F_fFgugoC5AFUzNTsUeY (accessed on 14 August 2024). 55. Unemployment Rate-Annual Data. Available online: https://ec.europa.eu/eurostat/databrowser/view/tipsun20/default/table?lang=en&fbclid=IwAR0usNomJak3HugLKpPWtWVfi3dPgocUmhA41TyxBaTT7Eqti6txAcGXldM (accessed on 14 August 2024). 56. Sokołowski, J.; Frankowski, J.; Lewandowski, P. Energy Poverty, Housing Conditions, and Self-Assessed Health: Evidence from Poland. IBS Working Paper 10/2020, December 2020. Available online: https://ibs.org.pl/publications/ubostwo-energetyczne-warunki-mieszkaniowe-i zdrowie-w-polsce/ (accessed on 14 August 2024). 57. Sałach, K.; Lewandowski, P. Energy Poverty Measurement Based on Public Health Data—Methodology and Application. Available online: https://ibs.org.pl/app/uploads/2018/02/IBS_Research_Report_pl_01_2018.pdf (accessed on 20 August 2024). (In Polish). 58. Faraj, K.; Khaled, M.; Faraj, J.; Hachem, F.; Castelain, C. Phase change material thermal energy storage systems for cooling applications in buildings: A review. Renew. Sustain. Energy Rev. 2020, 119, 109579. 59. Dincer, I.; Erdemir, D. Chapter 2-Heat Storage Methods. In Heat Storage Systems for Buildings; Elsevier: Amsterdam, The Netherlands, 2021; pp. 37–90. 60. Maccarini, A.; Hultmark, G.; Bergsoe, N.; Afshari, A. Free cooling potential of a PCM-based heat exchanger coupled with a novel HVAC system for simultaneous heating and cooling of buildings. Sustain. Cities Soc. 2018, 42, 384–395. 61. Boussamba, L.; Foufa, A.; Makhlouf, S.; Lefebrve, G.; Royon, L. Elaboration and properties of a composite bio-based PCM for an application in building envelopes. Constr. Build. Mater. 2018, 185, 156–165. 62. Du, K.; Calautit, J.; Wang, Z.; Wu, Y.; Liu, H. A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. Appl. Energy 2018, 220, 242–273. 63. Marincu, C.; Dan, D.; Mogą, L. Investigating the influence of building shape and insulation thickness on energy efficiency of buildings. Energy Sustain. Dev. 2024, 79, 101384. 64. Wang, Y.; Liu, K.; Liu, Y.; Wang, D.; Liu, J. The impact of temperature and relative humidity dependent thermal conductivity of insulation materials on heat transfer through the building envelope. J. Build. Eng. 2022, 46, 103700. 65. Wang, D.; Hu, L.; Du, H.; Liu, Y.; Huang, J.; Xu, Y.; Liu, J. Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls. Renew. Sustain. Energy Rev. 2020, 124, 1097725. 66. Żelazna, A.; Lichołai, L.; Krasoń, J.; Miąsik, P.; Mikušová, D. The Effects of Using a TrombeWall Modified with a phase Change Material, from the Perspective of a Building’s Life Cycle. Energies 2023, 16, 7689. 67. Starakiewicz, A.; Miasik, P.; Krason, J.; Babiarz, B. Multi-Aspect Shaping of the Building’s Heat Balance. Energies 2024, 17, 2702. |
Appears in Collections: | 281 – "Публічне управління та адміністрування" (Магістри) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2024_М_44_2_281_23m-01_Husnutdinov_R_R.pdf Restricted Access | 2.98 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.