Please use this identifier to cite or link to this item:
https://repo.btu.kharkov.ua/handle/123456789/63119
Title: | Структура популяції риб роду Crenilabrus (Labridae, Perciformes) у Чорному морі |
Other Titles: | Population structure of fish of the genus Crenilabrus (Labridae, Perciformes) in the Black Sea |
Authors: | Мезенцев, Олександр Ігорович |
metadata.dc.contributor.advisor: | Гноєвий, І. В. |
metadata.dc.contributor.affiliation: | Державний біотехнологічний університет Кафедра біотехнології, молекулярної біології та водних біоресурсів |
Keywords: | вплив антропогенного фактора;губан Crenilabrus;природна кормова база;розмір вилову риб;розмноження;структура популяції |
Issue Date: | 2024 |
Publisher: | Харків: ДБТУ |
Citation: | Мезенцев О. І. Структура популяції риб роду Crenilabrus (Labridae, Perciformes) у Чорному морі: кваліфікаційна робота магістра: спец. 207 - Воднi бiоресурси i аквакультура; наук. кер. І. В. Гноєвий. Харків: ДБТУ, 2024. 71 с. |
Abstract: | Мета кваліфікаційної роботи – оцінити структуру популяції та стан молоді риб
роду Crenilabrus родини губанів (Labridae) на прикладі чорноморської султанки
(Crenilabrus barbatus) та павичевого губана або зеленки (Crenilabrus tinca) на підставі
дослідження їх популяційних параметрів.
Завдання досліджень:
1. Дослідити структуру популяції губанів на прикладі поширених видів;
2. Оцінити стан молоді губанів, порівнюючи з аналогічним показником молоді
комерційного виду риби;
3. Оцінити показники росту риб та стан функціонування організму;
4. Дослідити показники експлуатації популяції риб;
5. Оцінити кормову базу губанів. The purpose of the qualification thesis is to assess the population structure and the condition of young fish of the genus Crenilabrus of the wrasse family (Labridae) using the example of the Black Sea wrasse (Crenilabrus barbatus) and the peacock wrasse or green wrasse (Crenilabrus tinca) based on the study of their population parameters. Tasks of research: 1. Investigate the structure of the wrasse population using the example of common species; 2. To assess the condition of young wrasse, comparing it with a similar indicator of young commercial fish species; 3. To evaluate fish growth indicators and the state of functioning of the body; 4. Investigate indicators of fish population exploitation; 5. Assess the fodder base of wrasse. |
URI: | https://repo.btu.kharkov.ua/handle/123456789/63119 |
metadata.dcterms.references: | 1. Adams C.G., Bayliss D.D., Whittaker J.E. (2099) The terminal Tethyan event: A critical review of the conflicting age determinations for the disconnection of the Mediterranean from the Indian Ocean. Fossil vertebrates of Arabia. Yale University Press, New Haven, CT−London, pp 477−484. 2. Akyol O. (2003). Retained and trash fish catches of beach-seining in the Aegean Coast of Turkey. Turkish Journal of Veterinary and Animal Sciences, 27, 1111-1117. 3. Altın A., Alver C. (2015). Length-weight relationships of forty-nine fish species from shallow waters of Gökçeada Island, northern Aegean Sea. Turkish Journal of Zoology, 39(5), 971-975. https://doi.org/10.3906/zoo-1412-15 4. Aydın M., Karadurmuş U. (2023). Record of the largest Symphodus tinca (Linnaeus, 1758) in the Black Sea coasts. Marine Science and Technology Bulletin, 12(4), 505-509. 5. Aydın M. (2018). Maximum length and age report of Sparus aurata (Linnaeus, 1758) in the Black Sea. Journal of Applied Ichthyology, 34(4), 964–966. 6. Azevedo J.M.N. (1999) Centuolabuus caeuuleus sp. nov., a long unrecognized species of marine fish (Teleostei, Labridae) from the Azores. Bocagiana 196:1−11. 7. Azouz A. (1971). Etude des biocénoses benthiques et de la faune ichtyologique des fonds chalutables de la Tunisie (Study of the biocenosis and ichthyological fauna from fishing bottoms of Tunisia. Nothern and southeastern area). Région nord et sud est. Thèse, Univ. Caen, 243 pp. 8. Ben Othman S. (1971). Observations hydrolo- giques, dragages et chalutage dans le sud- est tunisien (Hydrological observations, drags and trawl in southeastern Tunisia). Bull. Inst. Natl. Sci. Tech. Océanogr. Pêche, Salammbô., 2(2): 103-120. 9. Berg J. (2009). Discussion of the methods of investigating the food of fishes with reference to a preliminary study of the food of Gobiusculus flavescens (Gobiidae). Mar. Biol., 50: 263-273. 10. Beverton R.J.H., Holt S.J. (1957). On the dynamics of exploited fish populations. UK Ministry Agriculture and Fisheries, Fish. Invest. 19, 533. 11. Bilecenoğlu M., Çiçek E. (2014). An updated checklist of the marine fishes of Turkey. Turkish Journal of Zoology, 38(6), 901–929. 12. Bilge, G., Cerim, H. (2014). Weight-length relations for 103 fish species from the southern Aegean Sea, Turkey. Acta Ichthyologica et Piscatoria, 44(3), 263-269. 13. Bouain A., Bradai M.N. (2002). Période de reproduction et maturité sexuelle de Symphodus (Crenilabrus) tinca (Labridae), des côtes de Sfax (Tunisie) (Breeding period and sexual maturity of Symphodus (Crenilabrus) tinca (Lab- ridae), from the coast of Sfax (Tunisia). Cybium, 26(2): 1-4. 14. Boughamou N., Derbal F. & Kara M.H. (2014). Otolithometry and scalimetry two valid methods to describe the growth of peacock wrasse, Symphodus tinca (Actinopterygii: Perciformes: Labridae) from Eastern Algeria. Acta Ichthyologica et Piscatoria, 44(4), 285-293. 15. Bradai M.N. (2000). Diversité du peuplement ich- thyque et contribution à la connaissance des sparidés du golfe de Gabès (Biodiversity of ichthyological settlement and contribution to the knowledge of sparids from the Gulf of Gabès). Thèse Doc. d’état, Fac. Sci. Sfax, 600 pp. 16. Can˜as Diaz J.M. (1992) Contribucion al atlas osteologico de los teleosteos ibericos II. Osteologia comparada de los labridos ibericos. PhD thesis, Universidad Autonoma de Madrid, Madrid. 17. Cankiriligil E. C., Firidin Ş., Çakmak E. (2016). A preliminary study on some biological characters of East Atlantic peacock wrasse, Symphodus tinca, in the Black Sea, Turkey. Journal of the Black Sea/Mediterranean Environment, 22(3), 289–294. 18. Can M.F., Çekiç M. (2002). Weight-Length Relationships for Selected Fish Species of the Small Scale Fisheries off the South Coast of Iskenderun Bay. Turkish Journal of Veterinary and Animal Science, 26, 1181-1183. 19. Cantatore P., Ludovico A., Gadaleta M.N. (1994) Evolutionary analysis of cytochrome b sequences in some perciformes: Evidence for a slower rate of evolution than in mammals. J Mol Evol. 39:589−597. 20. Cato J.C. & Brown C.L. (2003). Marine Ornamental Species: Collection, Culture, and Conservation. Ames, IA: Iowa State Press. 21. Cengiz Ö. (2021). Length-Weight Relationships of Four Symphodus Species (Perciformes: Labridae) off Gökçeada Island (Northern Aegean Sea, Turkey). Acta Natura et Scientia, 2(2), 159-165. 22. Çoker T. & Mater S. (2006). Türkiye denizleri ihtiyoplanktonu (1974-2005) türleri. Su Ürünleri Dergisi, 23(3-4), 463-472. 23. Dimitriadis C. & Fournari-Konstantinidou, I. (2018). Length-weight relations for 20 fish species (Actinopterygii) from the Southern Ionian Sea, Greece. Acta Ichthyologica et Piscatoria, 48(4), 415–417. 24. Doll J.C., Wheeler P., Dinno A. (2021). FSA: Fisheries Stock Analysis. R package version 0.9.1: Fish R Core Team; accessed 2021 July 17. 25. Duka L.A. (1975) Feeding and food requirements of young fishes of the family Labridae in the black sea. J Ichthyol. 15(2):219−226 26. Dulčić J., Kraljević M. (1996). Weight–length relationships for 40 fish species in the eastern Adriatic (Croatian waters). Fisheries Research, 28(3), 243–251. 27. Erk H., Bilgi, B. (2006). Length–weight relationships for 47 coastal fish species from the northern Aegean Sea, Turkey. Journal of Applied Ichthyology, 22(4),274–278. 28. Erkoyuncu İ. (1995). Fisheries biology and population dynamics, Ondokuz Mayıs Üniv. Sinop Su Ürünleri Fak. Yayın No. 95. 265 p. 29. Felsenstein J. (2010) Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 39:783−791. 30. Fischer W., Schneider M. (1987). Fiches FAO identification des espèces pour les besoins de la pêche. (rev. 1). Méditerranée et mer Noire. Zone de pêche 37. Vol. II. Commission des Communautés Européennes and FAO. 31. Froese R. D. (2023). FishBase. World Wide Web electronic publication, version (08/2022). Retrieved on September 18, 2023. 32. Gayanilo F.C., Pauly D. (1994). The FAO-ICLARM stock assessment tools (FISAT) user’s guide, 186 p., FAO Computerized Information Series No.6, Rome. 33. Gertseva V., Matson S. E., Cope J. (2017). Spatial growth variability in marine fish: example from Northeast Pacific groundfish. ICES Journal of Marine Science, 74(6), 1602–1613. 34. Golani D., Başusta N. (2006). Fishes of the Eastern Mediterranean. Turkish Marine Research Foundation, Publication Number: 24, İstanbul. 259 p. 35. Gomon M.F., Bellwood D.W. (1990) Interrelationships of labroid fishes. Presentation at the Symposium on Percomorph Phylogeny, American Society of Ichthyologists and Herpetologists, Charleston, SC. 36. Gordoa A., Raventos N. (2000). Growth performance of four wrasse species on the north-western Mediterranean coast. Fisheries Research, 45, 43-50. 37. Gurkan S., Akcinar S.C. & Taskavak, E. (2010). Length–weight relationship of fish from shallow waters of Candarli Bay (North Aegean Sea, Turkey). Pakistan Journal of Zoology, 42(4), 495–498. 38. İlhan D. U., Akalın S., Özaydın O. (2008). Length-weight relationships of five Symphodus species (Pisces: Perciformes) from İzmir Bay, Aegean Sea. Ege University Journal of Fisheries and Aquatic Sciences, 25, 245–246. 39. Jardas, I. (1996). Ichthyofauna of the Adriatic Sea. Školska Knjiga. 40. Hacunda J.S. (2001). Trophic relationships among demersal fishes in coastal area of the Gulf of Main. Fish. Bull., 79: 775-788. 41. Hall A., Kingsford M. (2016). Predators exacerbate competitive interactions and dominance hierarchies between two coral reef fishes. PLOS ONE, 11(3), e0151778. 42. Hanel R., Sturmbauer C. (2000) Multiple recurrent evolution of trophic types in northeastern Atlantic and Mediterranean seabreams (Sparidae, Percoidei). J Mol Evol. 50:27б−283. 43. Hasegawa M., Yano T. (1985) Dating of the humanape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 21:1б0−174. 44. Helfman G., Bowen B. W. (2009). The Diversity of Fishes: Biology, Evolution, and Ecology. John Wiley & Sons Ltd. 45. Hishino H., Hasegawa M. (2009) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol. 29:170−179. 46. Huelsenbeck J.P., Crandall H.A. (2007) Phylogeny estimation and hypothesis testing using maximum likelihood. Annu Rev Ecol Syst. 28:437−466. 47. Hyslop E.J. (1980). Stomach contents analysis. A review of methods and their application. J. Fish. Biol., 17: 411-429. 48. Karadurmuş U. Aydın M. (2021). The new maximum length of the Solea solea (Linnaeus, 1758) in the Turkish Coast of Black Sea. Natural and Engineering Sciences, 6(3), 261–264. 49. Karakulak F.S., Bilgin B. (2006). Length-weight relationships for 47 coastal fish species from the northern Aegean Sea,Turkey. Journal of Applied Ichthyology. 22, 274-278. 50. Karataş A., Filiz H., Tok C. V. (2021). The Vertebrate Biodiversity of Turkey. In M. Öztürk, V. Altay & R. Efe (Eds.), Biodiversity, Conservation and Sustainability in Asia (pp. 175-274). 51. Kasapoglu N., Cakmak E. (2016). A preliminary study on some biological characters of East Atlantic peacock wrasse, Symphodus tinca, in the Black Sea, Turkey. J. Black Sea/Mediterranean Environment, 22(3), 289-294. 52. Keskin Ç. & Gaygusuz Ö. (2010). Length-weight relationships of fishes in shallow waters of Erdek Bay (Sea of Marmara, Turkey). European Journal of Biology, 69(2), 87-94. 53. Landa J., Pérez N., Piñeiro C. (2002). Growth patterns of the four spot megrim (Lepidorhombus boscii) in the northeast Atlantic. Fish Res. 55(1–3):141-152. 54. Levi F., Boutoute M., Mayzaud P. 2005. Lipid composition of Symphodus ocellatus (Perciforme: Labridae) in the north- western Mediterranean: influence of two different biotopes. MarBio. 146:805-814. 55. Lingviston R.J. (1984). Ontogenetic patterns in diet and feeding morphology in sympatric sparid fishes from sea-grass meadows. Copeia, 1984: 174-178. 56. Liu M., Suharti, S. (2010). Gonadal development in a giant threatened reef fish, the humphead wrasse Cheilinus undulatus, and its relationship to international trade. Journal of Fish Biology, 77, 706–718. 57. Lök A. & Gül, B. (2005). İzmir Körfezi Hekim Adası’ndaki deneysel amaçlı yapay resiflerde balık faunasının değerlendirilmesi. Su Ürünleri Dergisi, 22(1-2), 109-114. 58. Lundberg J.G. (2008) The temporal context for diversification of neotropical fishes. Phylogeny and classification of neotropical fishes. Porto Alegre: Museu de Ciencias e Technologia–PUC/RS, pp 49-68. 59. Martel G., Green J.M. (1987) Differential spawning success among territorial male cunners Tautogolabuus adspeusus (Labuidae), Copeia. 1987:643−648. 60. Mater S., Bilecenoğlu M. (2002). Türkiye deniz balıkları atlası. E.Ü. Su Ürünleri Fakültesi Yayınları No: 68, Bornova, İzmir, pp. 169. 61. Meyer A., Wilson A.C. (1990) Origin of tetrapods inferred from their mitochondrial DNA aAliation to lungfish. J Mol Evol. 31:359− 364. 62. Mickevich M.F., Farris J.S. (2001) The implication of congruence in Menidia. Syst Zool 18:201−205. 63. Miled-Fathalli N., Chakroun-Marzouk N. (2019). Length-weight relationships of 22 commercial fish species from the Gulf of Tunis (Central Mediterranean Sea). ahiers de Biologie Marine, 60(6), 541-546. 64. Morey G., Moranta J., Massuti E., Grau A., Linde M., Riera F. & Morales Nin B. (2003). Weight–length relationships of littoral to lower slope fishes from the western Mediterranean. Fisheries Research, 62 (1), 89–96. 65. Navarro M.R., Landa J., Villamor B. (2021). First approach to the growth and age corroboration of Northeast Atlantic chub mackerel (Scomber colias) in Northern Iberian waters. Estuar Coast Shelf Sci. 259:107433. 66. Oliphant M.S., Iverson I.L.K. (1971). Food habits of albacore, bluefin tuna and bonito in California waters. Fish. Bull., 152: 1-105. 67. Onay H. (2021). Length-weight relationships of four Symphodus species (Actinopterygii: Perciformes: Labridae) from Eastern Black Sea (Turkey). Marine Science and Technology Bulletin, 10(3), 228-233. 68. Ouannes-Ghorbel A. (2003). Etude écobiologique des Labridés (Poissons -Téléostéens) des côtes sud de la Tunisie (Ecobiological study of labrids (Pisces –Teleosts) from the southern coasts of Tunisia). Thèse, Fac. Sci. Sfax, 206 pp. 69. Ouannes-Ghorbel A., Bouain A. (2006). The diet of the peacock wrasse, Symphodus (Crenilabrus) tinca (Labridae), in the southern coast of Tunisia. Acta Adriatica, 47(2), 175-182. 70. Özaydın O., Tosunoğlu, Z. (2007). Length-weight relationships of fishes captured from Izmir Bay, Central Aegean Sea. Journal of Applied Ichthyology, 23(6), 695-696. 71. Özdemir S., Özsandıkçı U., Büyükdeveci, F. (2019). A new maximum length with length-weight relationship of tub gurnard (Chelidonichthys lucerna Linnaeus, 1758) from Central Black Sea Coasts of Turkey. Marine Science and Technology Bulletin, 8(2), 85–91. 72. Pallaoro A., Jardas I. (2003). Some biological parameters of the peacock wrasse, Symphodus (Crenilabrus) tinca (L. 1758) (Pisces: Labridae) from the middle eastern Adriatic (Croatian coast). Scientia Marina, 67(1), 33-41. 73. Panfili J., Wrigth P.J. (2002). Manual of Fish Sclerochronology. Brest (France): Ifremer-IRD coedition. p. 464. Pankhurst NW, Munday PL. 2011. Effects of climate change on fish reproduction and early life history stages. Mar Freshw Res.62(9):1015-1026. 74. Pauly D. (1980). A selection of simple methods for the assessment of tropical fish stocks, FAO Fisheries Circular No.729, Rome. 54 pp. 75. Pauly D. (1980). On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES Journal of Marine Science, 39, 175–192. 76. Pauly D., Munro J.L. (1984). Once more on the comparison of growth fin fish and invertebrates. ICLARM Fishbyte, 1, 21-22. 77. Petrakis G., Stergiou K.I. (1995). Weight-length relationships for 33 fish species in Greek waters. Fisheries Research, 21, 465-469. 78. Pollard D. (2010). Symphodus tinca. The IUCN Red List of Threatened Species 2010: e.T187805A8633735. 79. Quignard J.P., Pras A. (1996). Labridae. Fishes of the north-eastern Atlantic and the Mediterranean (pp. 919-942). UNESCO, Paris. Vol. 2. 80. Quignard J.P. (2006). Recherches sur les Labridae (Poissons Téléostéens Perciformes) des côtes européennes. Systématique et biologie (Pisces,Teleosts, Perciformes) from the European coasts. Systematics and biology. Ed. Cause et Castelnau. Montpellier, 247 pp. 81. Quignard J.P., Pras A. (1996). Labridae. United Nations Educational, Scientific and Cultural Organization. Fishes of the North-Eastern Atlantic and the Mediterranean.pp. 919–942. 82. Ro¨gl F. (1998) Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Ann Nat Mus Wien. 99A:279−310. 83. Ross S.T. (1977). Trophic ontogeny of the leopard searobin, Prionotus scitulus (Pisces: Triglidae). Fish. Bull., 76: 225-234. 84. Shephard S., Doria C.R.C., Ngor P.B., Ruffino M.L., Funge-Smith S.J. (2020). Size-based assessment of data-limited inland fish stocks – Review and applications. FAO Fisheries and Aquaculture Circular No.1214. FAO. 85. Skeljo F., Ferri J. (2012). The use of otolith shape and morphometry for identification and size-estimation of five wrasse species in predatorprey studies. Journal of Applied Ichthyology, 28: 524-530. 86. Škeljo F., Ferri J. (2015). Age and growth of the axillary wrasse, Symphodus mediterraneus (L.) from the eastern Adriatic Sea. Mar Biol Res. 11(7):780-784. 87. Stoner A.W. (1980). Feeding ecology of Lagodon rhomboides (Pisces: Sparidae): Variation and functional responses. Sympatric sparid fishes from seagrass meadows. Fish. Bull., 78: 337-352. 88. Rizzo E., Bazzoli N. 2020. Chapter 13 – reproduction and embryogenesis. Biology and Physiology of Freshwater Neotropical Fish. Cambridge (MA): Academic Press. p. 287-313. 89. Rhyne A.L. (2012). Revealing the appetite of the marine aquarium fish trade: the volume and biodiversity of fish imported into the United States. PLoS ONE, 7(5), e35808. 90. Russell B.C. (1988) Revision of the labrid fish genus Pseudolabuus and allied genera. Rec Aust Mus Suppl. 9:1−72. 91. Shili A., Bahri-Sfar L. (2018). Morphological variations of pecock wrasse Symphodus tinca (Linnaeus, 1758) populations along Tunisian coast. Cahiers de Biologie Marine, 59, 431-439. 92. Skeljo F., Ferri J. (2012). The use of otolith shape and morphometry for identification and size-estimation of five wrasse species in predator- prey studies. Journal of Applied Ichthyology, 28, 524-530. 93. Sparre P., Venema S.C. (1992). Introduction to tropical fish stock assessment, Part 1 Manual. FAO Fisheries technical paper 306, 407 p, Rome, FAO. 94. Sullivan J., Hilpatrick C.W. (2007) Phylogeny and molecular systematics of Peuomyscus aztecus species group (Rodentia: Muridae) inferred using parsimony and likelihood. Sys Biol. 46(3):42б−440. 95. Tezcan D., Çifçi G. (2016). Geology and geophysics of the southern shelf of the Black Sea. The Sea of Marmara: Marine Biodiversity, Fisheries, Conservation and Governance Turkish Marine Research Foundation. 32–512. 96. Tirasin M.E., Jorgensen T. (1999). An evaluation of the precision of diet description. Mar. Ecol. Prog. Ser., 182: 243-252. 97. Thompson J.D., Gibbson T.J. (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gappenalties and weight matrix choice. Nucleic Acids. Res 22:4673−4680. 98. Türkmen А., Aydoğan G. (2011). Türkiye denizlerindeki bazı kemikli balık türlerinin deniz akvaryumlarına kazandırılması. Su Ürünleri Dergisi, 28(3), 95-98. 99. Uçkun Ilhan D., Tosunoglu Z., Ozaydın O. (2008) Length- weight relationships of five Symphodus species (Pisces: Perciformes) from İzmir Bay, Aegean Sea. Ege Journal of Fisheries and Aquatic Sciences, 25(3), 245-246. 100.Ustaoğlu D., Aydın M. (2021). A new maximum length of the Spicara flexuosa Rafinesque, 1810 in the coastal waters of Turkey. Turkish Journal of Maritime and Marine Sciences, 7(1), 75–83. 101.Valle C., Bayle J.T., Ramos A.A. (2003). Weight-length relationships for selected fish species of the western Mediterranean Sea. Journal of Applied Ichthyology, 19(4), 261-262. 102.Volkoff H., Rønnestad, I. (2020). Effects of temperature on feeding and digestive processes in fish. Temperature, 7, 307–320. 103.Wabnitz C., Razak T. 2003. From Ocean to Aquarium. UNEP-WCMC, P.60, Cambridge, UK. 104.Ware D. (1992). Predation by rainbow trout (Salmo gairdneri): the influence of hunger, prey density and prey size. J. Fish. Res. Board Can., 29: 1193-1201. 105.Westneat M.W. (2003) Phylogenetic relationships of the tribe Cheilinini (Labridae: Perciformes). Bull Mar Sci. 52(1):351−394. 106.Zworykin D.D. (1998). Difference in shoaling behaviour between ocellated (Symphodus ocellatus) and long-striped (S. tinca) wrasses and its relation to other behavioural patterns. Mar. Freshw. Behav. Physiol, 31(2): 115-121 |
Appears in Collections: | 207 - "Водні біоресурси та аквакультура" (Магістри) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2024_M_TN-208_207-VB-23m_Mezentsev_O_I.pdf Restricted Access | 1.41 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.