Please use this identifier to cite or link to this item: https://repo.btu.kharkov.ua/handle/123456789/63116
Title: Перспективи промислу агароносних морських червоних водоростей (Ahnfeltia)
Other Titles: Prospects for fishing agar-bearing marine red algae (Ahnfeltia)
Authors: Макаренко, Андрій Сергійович
metadata.dc.contributor.advisor: Гноєвий, І. В.
metadata.dc.contributor.affiliation: Державний біотехнологічний університет
Кафедра біотехнології, молекулярної біології та водних біоресурсів
Keywords: агар;анфельта;екстракт;мікроелементи;органічні добрива;розмноження;талом;червоні водорості;agar;anfelta;extract;trace elements;organic fertilizers;propagation;thallus;red algae
Issue Date: 2024
Publisher: Харків: ДБТУ
Citation: Макаренко А. С. Перспективи промислу агароносних морських червоних водоростей (Ahnfeltia): кваліфікаційна робота магістра: спец. 207 - Воднi бiоресурси i аквакультура; наук. кер. І. В. Гноєвий. Харків: ДБТУ, 2024. 74 с.
Abstract: Мета кваліфікаційної роботи – визначити перспективні напрями використання червоних водоростей у народному господарстві для майбутнього нарощування їх промислу на шельфі Чорного моря . Для вирішення мети були поставлені завдання: 1. Визначити хімічний склад червоних водоростей у зразках рослин, вирощених за використання таких добрив. 2. Визначити ефективність використання червоних водоростей в якості добрив у залежності від розмірів подрібнення їх частинок. 3. Визначити ефективність використання екстракту з анфельти для збільшення проростання насіння та міцності сходів кукурудзи. 4. Визначити склад полісахаридів у червоній та бурій водоростях, та загальний вихід і якість агару у залежності від структури суміші різних типів водоростей. 5. Провести комплексну оцінку агару, отриманого із суміші водоростей, червоної водорості – анфельти та бурої водорості – пірули.
The purpose of the qualification thesis is to determine promising areas of use of red algae in the national economy for the future expansion of their fishery on the Black Sea shelf. To solve the goal, the following tasks were set: 1. To determine the chemical composition of red algae in plant samples grown using such fertilizers. 2. To determine the effectiveness of using red algae as fertilizers depending on the size of their particle grinding. 3. To determine the effectiveness of using an extract from anfelt to increase seed germination and strength of corn seedlings. 4. To determine the composition of polysaccharides in red and brown algae, and the overall yield and quality of agar depending on the structure of the mixture of different types of algae. 5. Conduct a comprehensive assessment of agar obtained from a mixture of algae, red algae - anfelta and brown algae - pirula.
URI: https://repo.btu.kharkov.ua/handle/123456789/63116
metadata.dcterms.references: 1. Alveal K., 2006. Fragilidad y estrategia de perduracio´n de Gracilaria. Estud. Oceanol. 5, 27-58. 2. Arminsen R., 2005. World-wide use and importance of Gracilaria. J. Appl. Phycol., 7, 231–243. 3. Arioli T., Mattner S.W., Winberg P.C. 2015 Applications of seaweed extracts in Australian agriculture: past, present and future. Journal Appl Phycol, 27, 2007–15. 4. Arsenault G.P., Yaphe W., 1995. Effect of acetaldehyde, acetic acid and ethanol on the resorcinol test for fructose. Analytical Biochemistry, 13, 133–142. 5. Avila M., Nun˜ez M., 1996. Biological basis for the management of ‘luga negra’ Sarcothalia cripata Gigartinales, Rhodophyta. in southern Chile. Hydrobiologia,326-327, 245–252. 6. Bateman A., 2020. Division of Labour in a Matrix, rather Than Phagocytosis or Endosymbiosis, as a Route for the Origin of Eukaryotic Cells. Biol. Direct, 15, 8. 7. Bird C., McLachlan J., 1991. Biology of Furcellaria lumbricalis (Hudson) Lamouroux (Rhodophyta: Gigartinales), a commercial carrageenophyte. Journal of Applied Phycology, 3, 61–82. 8. Bhattacharya D., Price D.C., 2018. When Less Is More: Red Algae as Models for Studying Gene Loss and Genome Evolution in Eukaryotes. Crit. Rev. Plant Sci. 37, 81–99. 9. Bolger A. M., Lohse M., Usadel B., 2014. Trimmomatic: a Flexible Trimmer for Illumina Sequence Data. Bioinformatics, 30, 2114–2120. 10. Boney A.D., 1991. Sub-lethal effects of mercury on marine algae. Marine Pollution Bulletin, 2, 69-71. 11. Boo G.H., De Clerck O., 2019. Contrasting Patterns of Genetic Structure and Phylogeography in the marine agarophytes Gelidiophycus divaricatus and G. freshwateri (Gelidiales, Rhodophyta) from East Asia. J. Phycol. 55, 1319–1334. 12. Bravo A., Uribe M., Buitano M.S., 1992. Evaluation of artificial intertidal enclosures for Gracilaria farming in southern Chile. Aquacult , 11, 203–216. 13. Bringloe T.T. Macaya E.C., 2019. The Phylogeographic History of Amphitropical Callophyllis Variegata (Florideophyceae,Rhodophyta) in the Pacific Ocean. Algae, 34, 91–97. 14. Bryan G.W., 1994. Pollution due to heavy metals and their compounds. In Marine Ecology: A Comprehensive, Integrated Treatise on Life in the Oceans and Coastal Waters, vol. 5. Ocean Management, part 3, (ed. O. Kinne), 1289-1431. 15. Buck C.B., Muller M., Low D.R., Schiller J.T., 2006. Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathog, 2, 69. 16. Burshtein A.I., 1993, Methods of food research, Kiev: Gosmedizdat. 643. 17. Buschmann A.H., Go´mez P., 2003. Interaction mechanisms between Gracilaria chilensis Rhodophyta and epiphytes. Hydrobiologia, 260-261, 345–351. 18. Calderon M.S., Boo S.M., 2016. Phylogeny of Phyllophoraceae (Rhodophyta, Gigartinales) reveals Asterfilopsis gen. nov. from the Southern Hemisphere. Phycologia, 55(5), 543–54. 19. Candia A., Nelson W., 2009. Comparison of ITS RFLP patterns of Gracilaria Rhodophyceae, Gracilariales. Populations from Chile and New Zealand and an examination of interfertility of Chilean morphotypes. J. Appl. Phycol., 11, 185–193. 20. Capo T.R., Serafy J.E., 1999. Sustained high yields of Gracilaria Rhodophyta grown in intensive large-scale culture. J. Appl. Phycol., 11, 143–147. 21. Chen L., 1977. The sporophyte of Ahnfeltia pficata (Huds.) Fries (Rhodophyceae, Gigartinales) in culture. Phycologia, 16, 163–168. 22. Choi J.W., Arimoto A., 2020. Organelle Inheritance and Genome Architecture Variation in Isogamous Brown Algae. Sci. Rep., 10, 2048. 23. Correa J.A., Flores V., 2005. Whitening, thallus decay and fragmentation in Gracilaria chilensis associated with an endophytic amoeba. J. Appl. Phycol., 7, 421–425. 24. Craigie J.S., 1990. Cell walls. In K. Cole & R. Sheath. The biology of red algae, 221–257. 25. Daly M.A., Mathieson A.C., 1997. The effects of sand movement on intertidal seaweeds and selected invertebrates at Bound Rock, New Hampshire, USA. Marine Biology, 43, 45-55. 26. Darling A.E., Mau B., Perna N.T., 2010. Multiple Genome Alignment with Gene Gain, Loss and Rearrangement. PLoS One 5, 11147. 27. Dawes C.P., 1995. Suspended cultivation of Gracilaria in the sea. J. Appl. Phycol., 7, 303–313. 28. Dawson E.Y., 2004. Marine plants in the vicinity of the Institute Oc’eanographique de Nha Trang. Vietnam Pac Sci., 8, 372–469. 29. De Ruiter G.A., Rudolph B., 1997. Carrageenan biotechnology. Trends in Food Science and Technology, 8, 389–395. 30. Dodgson K.S., Price R.G., 1992. A note on the determination of the ester sulfate content of sulfated polysaccharides. Biochemical Journal, 84, 106–110. 31. Donald F.K., Capecchi M.F., 2003. Nuclear genome characterization and carrageenan analysis of Gymnogongrus griffithsiae (Rhodophyta) from North Carolina. J Appl Phycol., 5, 99–107. 32. Edding M., Macchiavello J., Black H., 1987. Culture of Gracilaria sp. in outdoor tanks: productivity. Hydrobiologia, 151-152, 369–374. 33. Farnptam W.F., 2016. The occurrence of a Porphyrodiscus simulans Batt phase in the life history of Ahnfeltia picefa (Huds.) Fries. Br. phycol. J., 11, 183-190. 34. Fletcher R.L., 1995. Epiphytism and fouling in Gracilaria cultivation: an overview. J. Appl. Phycol., 7, 325–333. 35. Fredericq S., Lopez-Bautista J.M., 2002. Characterization and phylogenetic position of the red alga Besa papillaeformis Setchell: An example of progenetic heterochrony. Constancea, 83 (9), 1–12. 36. Gantt E., 2000. Pigmentation and photoacclimation. Biology of the Red Algae,203-219. 37. Go´mez I.M., Westermeier R.C., 2001. Frond regrowth from basal disc in Iridaea laminarioides Rhodophyta, Gigartinales. at Mehu´ın, southern Chile. Mar. Ecol.: Prog. Ser., 73, 83–91. 38. Gonza´lez J.E., Meneses I., 1996. Differences in the early stages of development of gametophytes and tetrasporophytes of Chondracanthus chamissoii C.Ag. Ku¨tzing from Puerto Aldea, northern Chile. Aquaculture, 193, 91–107. 39. Gorka B., Lipok J., Chojnacka K., 2015. Biologically active organic compounds, especially plant promoters, in algae extracts and their potential application in plant cultivation. In Marine Algae Extracts: Processes, Products, Applications.659–80. 40. Guiry M.D., Guiry G.M., 2017. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Accessed 6 Mar 2017. 41. Gu¨ttler P., 2000. Dina´mica Poblacional de Callophyllis Õariegata Rhodophyta, Kallymeniaceae. y especies asociadas en Punta Corona Ancud, Chiloe´. Pra´ctica Profesional, Universidad de Los Lagos, Osorno, Chile, 64 pp. 42. Haglund K., Axelsson L., Pedersen M., 1997. Photosynthesis and respiration in the alga Ahnfeltia plicata in a flow through system. Marine Biology, 96, 409-412. 43. Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program. Nucleic Acids Symp Ser., 41. 95–8. 44. Hammer L., 1972. Anaerobiosis in marine algae and marine phanerograms. Proceedings of the Seventh International Seaweed Symposium, Sapporo, Japan, August 8-12, 1971, 414-419. 45. Hannach G., Santelices B., 2005. Ecological differences between the isomorphic reproductive phases of two species of Iridaea Rhodophyta, Gigartinales. Mar. Ecol.: Prog. Ser., 22, 291–303. 46. Hirayasu H., Fushiki T., 2005. Sulfated polysaccharides derived from dietary seaweeds increase the esterase activity of a lymphocyte tryptase, granzyme A. Journal of Nutritional Science and Vitaminology (Tokyo), 51, 475–477. 47. Hoffmann A., Santelices B., 1997. Marine Flora of Central Chile. Ediciones Universidad Cato´lica de Chile, Santiago, 434 pp. 48. Hommersand M.H., Fredericq S., Freshwater D.W., 1994. Phylogenetic systematics and biogeography of the Gigartinaceae (Gigartinales, Rhodophyta) based on sequence analysis. Bot Mar., 37, 193–203. 49. Hu Z.-M., Uwai S., Yu S.-H., 2011. Phylogeographic Heterogeneity of the Brown Macroalga Sargassum Horneri (Fucaceae) in the Northwestern Pacific in Relation to Late Pleistocene Glaciation and Tectonic Configurations. Mol. Ecol., 20, 3894–3909. 50. Indergaard M., Oestgaard K., Stoeren O., 1996. Growth studies of macroalgae in a microcomputer-assisted spray cultivation system. Journal of Experimental Marine Biology and Ecology, 98, 199-213. 51. Janouškovec J., Leblanc C., Collén, 2013. Evolution of Red Algal Plastid Genomes: Ancient Architectures, Introns, Horizontal Gene Transfer, and Taxonomic Utility of Plastid Markers. PLoS One, 8, 59001. 52. Jara F., 1990. Epidemic outbreaks of herbivorous annelid worms Polychaeta: Nereididae. in the south of Chile. Medio Ambiente, 11, 65–75. 53. Johansson G., Eriksson B.K., Snoeijs P., 2008. Long term changes of macroalgal vegetation in the Skagerrak area. Hydrobiologia, 385, 121-138. 54. Kai Y., Orr J.W., Sakai K., 2011. Genetic and Morphological Evidence for Cryptic Diversity in the Careproctus Rastrinus Species Complex (Liparidae) of the North Pacific. Ichthyol. Res. 58, 143–154. 55. Kang J.W., 1996. On the geographical distribution of marine algae in Korea. Bull Pusan Fish Coll., 7, 1–125. 56. Kato A., Guimarães S.M.P.B., Kawai H., Masuda M., 2009. Characterization of the crustose red alga Peyssonnelia japonica (Rhodophyta, Gigartinales) and its taxonomic relationship with Peyssonnelia boudouresquei based on morphological and molecular data. Phycol Res., 57, 74–86. 57. Kelman D., Posner E.K., Wright A.D., 2012. Antioxidant activity of Hawaiian marine algae. Mar Drugs., 10, 403–16. 58. Knutsen S.H., Myslabodski D. E., Grasdalen H., 1990. Characterization of carrageenan fractions from Norwegian Furcellaria lumbricalis Lamour. by 1H and 13C NMR spectroscopy. Carbohydrate Research, 206, 367–372. 59. Kolender A.A., Matulewicz M.C., 2004. Desulfation of sulfated galactans with chlorotrimethylsilane. Characterization of beta-carrageenan by 1H NMR spectroscopy. Carbohydrate Research, 339, 1619–1629. 60. Kuschel F.A., Buschmann A.H., 2001. Abundance, effects and management of epiphytism in intertidal cultures of Gracilaria Rhodophyta in southern Chile. Aquaculture, 92, 7–19. 61. Laos K., Ring S., 2005. Note: Characterisation of furcellaran samples from Estonian Furcellaria lumbricalis (Rhodophyta). Journal of Applied Phycology, 17, 461–464. 62. Lee I.K., Kang J.W., 1986. A check list of marine algae in Korea. Kor J Phycol.,1, 311–25. 63. Lin S-M., Frederucq S., Hommersand M.H., 2001. Systematics of the Delesseriaceae (Ceramiales, Rhodophyta) based on large subunit rDNA and rbcL sequences, including the Phycodryoideae, subfam. nov., J Phycol., 37, 881–99. 64. Lüning K., Freshwater W., 1998. Temperature tolerance of northeast Pacific marine algae. Journal of Phycology, 24, 310-315. 65. Maggs C.A., Le Gall L., Mineur F., Saunders G.W., 2013. Fredericqia deveauniensis, gen. et sp. nov. (Phyllophoraceae, Rhodophyta), a new cryptogenic species. Cryptogam Algol., 34, 273–96. 66. Maggs C.A., Pueschel C.M., 1999. Morphology and development of Ahnfeltia plicata (Rhodophyta): proposal of Ahnfeltiales ord. nov. Journal of Phycology, 25, 333-351. 67. Mansilla A., Rosenfeld S., Ojeda J., Yokoya N.S., 2014. Growth Responses to Temperature, Salinity and Nutrient Variations, and Biomass Variation and Phenology of Ahnfeltia Plicata (Rhodophyta, Ahnfeltiales): a Commercially Interesting Agarophyte from the Magellanic Region, Chile. J. Appl. Phycol., 26, 1133–1139. 68. Mart´ınez A., Buschmann A.H., 2006. Agar yield and quality of Gracilaria chilensis Rhodophyta in tank culture using fish effluents. Hydrobiologia, 326-327, 341–345. 69. Masuda M., 1993. Neodilsea crispata, a new species of red algae (Cryptonerniales, Rhodophyta). J. Jap. Bot., 48, 36-48. 70. Masuda M., 1997. Taxonomic notes on the Japanese species of Gymnogongrus (Phyllophoraceae, Rhodophyta). J Fac Sci Hokkaido Univ, Series V (Botany), 14, 39–72. 71. Masunn M., Decew T. C., 2009. The tetrasporophyte of Gymnogongr us flabelliformis Harvey (G igartinales, Phyllophorastomes in the cystocarp ot Attnfeltia gigartinoides. Univ. Caltt. Publ. Bot., 4, 137-142. 72. MсGrudïsr W.H., 2007. The life history of the red alga Ahnfeltia cottcintio (Rhodophyta, Gigartinales). Phycologia, 16, 197–203. 73. Meneses I., 1996. Assessment of populations of Gracilaria chilensis Gracilariales, Rhodophyta. utilizing RAPD. J. Appl. Phycol., 8, 185–192. 74. Michalak I., Chojnacka K., 2016. The potential usefulness of a new generation of agro-products based on raw materials of biological origin. Acta Sci. Pol. Hortic, 15,97–120. 75. Mikami H., 1995. A systematic study of the Phyllophoraceae and Gigartinaceae from Japan and its vicinity. Sci. Pap. Inst. Alg. Res., Fac. Sci., Hokkaido Univ., 5, 181–285. 76. Milstein D., Saunders G.W., 2012. DNA Barcoding of Canadian Ahnfeltiales (Rhodophyta) Reveals a New Species - Ahnfeltia borealis sp. nov., Phycologia, 51, 247–259. 77. Mora O., 1992. Aspectos de la ecolog´ıa de produccio´n de Iridaea ciliata Ku¨tzing Rhodophyta; Gigartinales en Bah´ıa Metri ŽChile. Thesis, Instituto Profesional de Osorno, Chile, 36 pp. 78. Norambuena R., 2006. Recent trends of seaweed production in Chile. Hydrobiologia, 326-327, 371–379. 79. Norton T.A., 2002. Dispersal by macroalgae. British Phycological Journal, 27, 293-301. 80. O'Brien P.J., Dixon P.S., 1976. Effects of oils and oil components on algae: a review. British Phycological Journal, 11, 115-142. 81. Olsen J.L., Zechman F.W., Stam W.T., 2010. The Phylogeographic Architecture of the Fucoid seaweed Ascophyllum nodosum: an Intertidal ’marine Tree’ and Survivor of More Than One Glacial-Interglacial Cycle., J. Biogeogr., 37, 842–856. 82. Park T.-G., Choi S.-G., Kim Z.-G., 2010. Distribution of the Spotted Seal, Phoca largha, along the Coast of Baekryongdo, Korean J. Fish. Aquat. Sci. 43, 659–664. 83. Piriz M.L., 2006. Phenology of Gigartina skottsbergii Setchell et Gardner population in Chubut Province Argentina. Bot. Mar., 39, 311–316. 84. Pizarro A. 1996. Conocimiento actual y avances recientes sobre el manejo y cultivo de Gracilaria en Chile. Monogr. Biol., 4, 63–96. 85. Poblete A., Inostroza I., 1997. Management of Gracilaria natural bed in Lenga, Chile: a case study. Hydrobiologia, 151-152, 307–311. 86. Popper Z.A., Sadler I.H., Fry S.C., 2001. 3-O-Methyl-galactose residues in lycophyte primary cell walls. Phytochemistry, 57, 711–719. 87. Retamales C.A., Buschmann A.H., 2006. Gracilaria – Mytilus interaction on a commercial algal farm in Chile. Hydrobiologia, 326-327, 355–359. 88. Rojas R.H., Leo´n M., Rojas R., 2006. Practical and descriptive techniques for Gelidium rex Gelidiales, Rhodophyta. culture. Hydrobiologia, 326-327, 367–370. 89. Rosenvinge L.K., 1991. The reproduction of Ahnfeltia plicata. K. Danske Vidensk. Selsk. Biol. Medd. IO, 2, 1–29. 90. Santelices B., Norambuena R., 1997. A harvesting strategy for Iridaea laminarioides in central Chile. Hydrobiologia, 151-152, 329–333. 91. Saunders G.W., Moore T.E., 2013. Refinements for the Amplification and Sequencing of Red Algal DNA Barcode and RedToL Phylogenetic Markers: a Summary of Current Primers, Profiles and Strategies. Algae, 28, 31–43. 92. Schotter G., 1998. Recherches sur les Phyllophoracées. Bull. Inst. ocianogr. Monaco, 16 (138), 1-99. 93. Seguel M., Santelices B., 1998. Cultivo masivo de la fase conchocelis de luche, Porphyra columbina Montagne Rhodophyta, Bangiaceae Gayana Bot., 45, 317–327. 94. Silva P. C., 1979. The benthic algal flora of central San Francisco Bay. Systematic catalogue, 313-345. 95. Silva P.C., DeCew T.C., 2002. Ahnfeltiopsis, a new genus in the Phyllophoraceae (Gigartinales, Rhodophyceae). Phycologia, 31, 576–80. 96. Smith D.R., 2020. Common Repeat Elements in the Mitochondrial and Plastid Genomes of green Algae. Front. Genet., 11, 465. 97. Stevenson T.T., Furneaux R.H., 2001. Chemical methods for the analysis of sulfated galactans from red algae. Carbohydrate Research, 210, 277–298. 98. Titlyanov E.A., Chapman, D.J., 1999. A review of the biology, productivity and economic potential of the agar-containing red alga Ahnfeltia tobuchiensis Inter. J. Algae, 1, 28–67. 99. Troell M., Kautsky N., Kautsky L., 2007. Integrated open sea cultivation of Gracilaria chilensis Gracilariales. and salmons for reduced environmental impact and increased economic output. Aquaculture, 156, 45–62. 100. Truus K., Tuvikene R., Pehk T., 2006. Structural and Compositional Characteristics of Gelling Galactan from the Red Alga Ahnfeltia tobuchiensis (Ahnfeltiales, the Sea of Japan). Carbohydr. Polym., 63, 130–135. 101. Tokida J., Masxxi T., 1999. Studies on the reproductive organs of red algae. III. On the structure and development of female organs in Schzymenia dubyr, Gymnogongrus flabelliformrs and Rhodymenia pertusa. Bull. Fac. Fish., Hokkaido Univ., 10, 87–96. 102. Ugarte R., Santelices B., 2002. Experimental tank cultivation of Gracilaria chilensis in central Chile. Aquaculture, 101, 7–16. 103. Usov A.I., 1998. Structural analysis of red seaweed galactans of agar and carrageenan groups. Food Hydrocolloids, 12, 301–308. 104. Vadas R.L., Johnson S., Norton T.A., 1992. Recruitment and mortality of early post-settlement stages of benthic algae. British Phycological Journal, 27, 331-351. 105. Van der Meer J., Todd E.R., 2007. Genetics of Gracilaria sp Rhodophyceae, Gigartinales.: IV. Mitotic recombinations and its relationship to mixed phases in the life history. Can. J. Bot., 55, 2810–2817. 106. Vanselow C., Weber A. P. M., Fromme P., 2009. Genetic Analysis of the Photosystem I Subunits from the Red Alga, Galdieria Sulphuraria. Biochim. Biophys. Acta (Bba) - Bioenerg., 1787, 46–59. 107. Va´squez J.A., Vega A., 1999. The effect of harvesting of brown seaweeds: a social, ecological and economical important resource. World Aquacult. 30, 19–22. 108. Vogt H., Schramm, W., 1991. Conspicuous decline of Fucus in Kiel Bay (Western Baltic): what are the causes ? Marine Ecology Progress Series, 69, 189-194. 109. Westermeier R., Rivera P.J., Chacana M., Go´mez I., 1997. Biological bases for management of Iridaea laminarioides Bory in southern Chile. Hydrobiologia 151-152, 313–328. 110. Wesz J.A., Guiry M.D. 1992. A life history study of Gigartina johnstonii (Rhodophyta) from the Gulf of California. Bot. Mar., 25, 205-211. 111. Wicke S., Schneeweiss G. M., Quandt D., 2011. The Evolution of the Plastid Chromosome in Land Plants: Gene Content, Gene Order, Gene Function. Plant Mol. Biol., 76, 273–297. 112. Wieczorek P.P., Lipok J., Górka B., 2013. Separation and identification of biologically active compounds from algae and their use in nutrition of plants. Przem.Chem, 92, 1061–6. 113. Yang B., Ren S., Chai W., 2009. Mechanism of mild acid hydrolysis of galactan polysaccharides with highly ordered disaccharide repeats leading to a complete series of exclusively odd-numbered oligosaccharides. FEBS Journal, 276, 2125–2137. 114. Yang M.Y., Yang E.C., Kim M. S., 2020. Genetic Diversity Hotspot of the Amphi-Pacific Macroalga Gloiopeltis furcata sensu lato (Gigartinales, Florideophyceae). J. Appl. Phycol., 32, 2515–2522. 115. Yendo, K. 1996. Notes on algae new to Japan. V. Bot. Mag., 30, 243-263. 116. Yuan H., Song J., Li X., Dai J., 2006. Immunomodulation and antitumor activity of j-carrageenan oligosaccharides. Cancer letters, 243, 228–234. 117. Yu G., Zhou X., Zhao X., 2007. Study on the viscosity character of a sulfated galactan purified from Furcellaria lumbricalis. Journal of Ocean University of China, 37, 601–604. 118. Yurkevich M.G., Sidorova V.A., Dubrovina I.A. 2019. Use of plant stimulants based on brownalgae and shungite for forcing onions on a feather. Agrarian Bulletin of Primorye, 1(13), 5-9. 119. Zhang Y., Fu X., Gao X., 2019. Preparation and Characterization of agar, Agarose, and Agaropectin from the Red Alga Ahnfeltia plicata. J. Ocean. Limnol. 37, 815–824. 120. Zhou G., Wang C., 2006. Effect of low molecular lambdacarrageenan from Chondrus ocellatus on antitumor H-22 activity of 5-Fu. Pharmacological Research, 53, 129–134
Appears in Collections:207 - "Водні біоресурси та аквакультура" (Магістри)

Files in This Item:
File Description SizeFormat 
2024_М_ТН-208_207-ВБ-23м_Makarenko_A.S..pdf
  Restricted Access
2.73 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.