Please use this identifier to cite or link to this item:
https://repo.btu.kharkov.ua/handle/123456789/63041
Title: | Біотехнологія функціонального йогурту з додаванням біомаси спіруліни |
Other Titles: | Biotechnology of functional yogurt with spirulina biomass |
Authors: | Офіленко, Наталія Олександрівна |
metadata.dc.contributor.advisor: | Безуглий, М. Д. |
metadata.dc.contributor.affiliation: | Державний біотехнологічний університет біотехнології, молекулярної біології та водних біоресурсів |
Keywords: | функціональне харчування;функціональний йогурт;молочнокислі бактерії;біомаса ціанобактерій;Spirulina platensis;functional nutrition;functional yogurt;lactic acid bacteria;cyanobacterial biomass |
Issue Date: | 2024 |
Publisher: | Харків: ДБТУ |
Citation: | Офіленко Н. О. Біотехнологія функціонального йогурту з додаванням біомаси спіруліни: кваліфікаційна робота магістра: спец.162 - Біотехнології та біоінженерія; наук. кер. М. Д. Безуглий. Харків, 2024. 52 с. |
Abstract: | У випускній кваліфікаційній роботі досліджено біотехнологічне
одержання функціонального йогурту з додаванням біомаси спіруліни як
пребіотичної добавки для підтримки життєздатності молочнокислих
бактерій. Проведено аналітичний огляд літератури щодо сучасного стану
виробництва функціональних кисломолочних продуктів, зокрема щодо
перспективності додаванням спіруліни як функціонального компоненту. За
даним літератури дана мікробіологічна та біохімічна характеристика
Spirulina platensis, розглянуто біотехнологічний спосіб отримання біомаси
спіруліни.
Отримано зразки функціонального йогурту з додаванням сухої біомаси
Spirulina platensis з використанням класичної закваски на основі
молочнокислих бактерій. Вміст сухої спіруліни становив 0,5, 1 і 2 %
(мас./об.). Проведено аналіз показників якості отриманого функціонального
йогурту згідно вимог ДСТУ. Протягом 14 днів всі зразки витримували
випробування на автивну та титровану кислотність, титр життєздатних
молочнокислих бактерій. Визначено, шо оптимальним є додавання біомаси
Spirulina platensis у кількості 1%, що забезпечує покращення
мікробіологічних властивостей продукту, але зберігаючи високі споживчі
якості. На підставі проведених досліджень зроблено висновок, що
використання біомаси спіруліни позитивно впливає на йогурт піл час
приготування, зменшуючи тривалість ферментації, та під час зберігання
продукту, забезпечуючи високий титр життєздатних молочнокислих
бактерій. In the graduation thesis, the biotechnological production of functional yogurt with the addition of spirulina biomass as a prebiotic supplement to maintain the viability of lactic acid bacteria was investigated. An analytical review of the literature was conducted on the current state of production of functional fermented milk products, in particular on the prospects of adding spirulina as a functional component. Based on the literature, the microbiological and biochemical characteristics of Spirulina platensis are given, and a biotechnological method for obtaining spirulina biomass is considered. Samples of functional yogurt with the addition of dry Spirulina platensis biomass using a classic starter culture based on lactic acid bacteria were obtained. The content of dry spirulina was 0.5, 1 and 2% (wt./vol.). The quality indicators of the obtained functional yogurt were analyzed in accordance with the requirements of DSTU. Within 14 days, all samples withstood tests for active and titrated acidity, titer of viable lactic acid bacteria. It was determined that the optimal addition of Spirulina platensis biomass in an amount of 1% is required, which ensures the improvement of the microbiological properties of the product, while maintaining high consumer qualities. Based on the conducted studies, it was concluded that the use of spirulina biomass has a positive effect on yogurt both during preparation, reducing the duration of fermentation, and during product storage, ensuring a high titer of viable lactic acid bacteria. |
URI: | https://repo.btu.kharkov.ua/handle/123456789/63041 |
metadata.dcterms.references: | 1. About Functional Foods: The Probiotics and Prebiotics State of Art. / A. Ballini et al. Antibiotics (Basel, Switzerland). 2023. Vol. 12, No. 4. Article ID 635. 2. Investigating the Effect of Consumers Knowledge on Their Acceptance of Functional Foods: A Systematic Review and Meta-Analysis. / M. T. Baker et al. Foods. 2022. Vol. 11. Article ID 1135. 3. Bioactive Ingredients from Dairy-Based Lactic Acid Bacterial Fermentations for Functional Food Production and Their Health Effects. / H. M. Sørensen et al. Nutrients. 2023. Vol. 15, No. 22. Article ID 4754. 4. Exopolysaccharides of Lactic Acid Bacteria: Production, Purification and Health Benefits towards Functional Food. / H. M. Sørensen et al. Nutrients.2022. Vol. 14, No. 14. Article ID 2938. 5. Consumers' willingness to pay for health claims during the COVID-19 pandemic: A moderated mediation analysis. / L. Bou Fakhreddine et al. J. Agriculture Food Res. 2023. Vol. 11. Article ID 100523. 6. Papagianni M. Metabolic engineering of lactic acid bacteria for the production of industrially important compounds. Computational Structural Biotechnol. J. 2012. Vol. 3. Article ID e201210003. 7. Lactic Acid Bacteria: Food Safety and Human Health Applications. / R. D. Ayivi et al. Dairy. 2020. Vol. 1. P. 202–232. 8. Feord J. Lactic acid bacteria in a changing legislative environment. Antonie van Leeuwenhoek. 2002. Vol. 82. No. 1-4. P. 353–360. 9. Khedkar S., Bröring S., Ciliberti S. Exploring the Nutrition and Health Claims Regulation (EC) No. 1924/2006: What is the impact on innovation in the EU food sector?. Int. J. Food Sc. Nutrition. 2017. Vol. 68, No. 1. P. 10–17. 10. Food Safety Regulatory Research Needs 2030. / S. Bronzwaer et al. EFSA J. European Food Safety Authority. 2019. Vol. 17, No. 7. Article ID e170622. 11. РЕГЛАМЕНТ ЄВРОПЕЙСЬКОГО ПАРЛАМЕНТУ І РАДИ (ЄС) № 1924/2006 від 20 грудня 2006 року щодо тверджень про поживну цінність та користь для здоров’я, які зазначають на харчових продуктах. [Електронний ресурс] – Режим доступу: https://www.kmu.gov.ua/storage/app/sites/1/55-GOEEI/es-19242006.pdf 12. Scientific and technical guidance for the preparation and presentation of a health claim application (Revision 2). / D. Turck et al. EFSA J. European Food Safety Authority. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). 2017. Vol. 15, No. 1. Article ID e04680. 13. Tewari S., David J. P., Gautam A. A review on probiotic dairy products and digestive health. J. Pharmacogn. Phytochem. 2019. Vol. 8. Article ID 368–372. 14. de Souza M., Drunkler D. A, Colla E. Probiotic Functional Yogurt: Challenges and Opportunities. Fermentation. 2024. Vol. 10, No. 1. Article ID6. 15. Influence of probiotics, prebiotics, synbiotics and bioactive phytochemicals on the formulation of functional yogurt. / N. F. Fazilah et al. J. Funct. Foods.2018. Vol. 48. P. 387–399. 16. Impact of probiotics and prebiotics on food texture. / J. T. Guimarães et al. Curr. Opin. Food Sci. 2020. Vol. 33. P. 38–44 17. International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. / C. Hill et al. Nat. Rev. Gastroenterol. Hepatol. 2014. Vol. 11. P. 506–514. 18. Rivera-Espinoza Y., Gallardo-Navarro Y. Non-dairy probiotic products. Food Microbiol. 2010. Vol. 27. P. 1–11. 19. Forssten S. D., Sindelar C. W., Ouwehand A. C. Probiotics from an industrial perspective. Anaerobe. 2011. Vol. 17. P. 410–413. 20. Tripathi M. K., Giri S. K. Probiotic functional foods: Survival of probiotics during processing and storage. J. Funct. Foods. 2014. Vol. 9. P. 225–241. 21. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. / G. R. Gibson et al. Nat. Rev. Gastroenterol. Hepatol. 2017. Vol. 14. P. 491–502. 22. Effects of regular and decaffeinated roasted coffee (Coffea arabica and Coffea canephora) extracts and bioactive compounds on in vitro probiotic bacterial growth. / A. L. Sales et al. Food Funct. 2020. Vol. 11. P. 1410–1424. 23. Yangilar F., Yildiz P. O. Effects of using combined essential oils on quality parameters of bio-yogurt. J. Food Process. Preserv. 2018. Vol. 42. P. 133–142. 24. Antimicrobial potential of aqueous coffee extracts against pathogens and Lactobacillus species: A food matrix application. / L. A. Canci et al. Food Biosci. 2022. Vol. 47. Article ID 101756. 25. Impact of encapsulating probiotics with cocoa powder on the viability of probiotics during chocolate processing, storage, and in vitro gastrointestinal digestion. / M. D. Hossain et al. J. Food Sci. 2021. Vol. 86. P. 1629–1641. 26. Singletary K. Turmeric: Potential health benefits. Nutr. Today 2020. Vol. 55. P. 45–56. 27. Effect of the incorporation of graded levels of turmeric (Curcuma longa) on different qualities of stirred yoghurt. / E. C. Martina et al. Afr. J. Food Sci. 2020. Vol. 14. P. 71–85. 28. Color stability of yogurt with natural yellow food dye from safflower (carthamus tinctorius L.). / L. Popescu et al. J. Eng. Sci. 2022. Vol. 29. P. 142–150 29. Roshanravan N., Ghaffari S. The therapeutic potential of Crocus sativus Linn.: A comprehensive narrative review of clinical trials. Phytother Res. 2022. Vol. 36. P. 98–111. 30. Microencapsulated Saffron Floral Waste Extracts as Functional Ingredients for Antioxidant Fortification of Yogurt: Stability during the Storage. / D. Cerdá-Bernad et al. Food Sci. Technol. 2023. Vol. 184. Article ID 114976. 31. Trends and technological advancements in the possible food applications of Spirulina and their health benefits: A Review. / N. K. Alfadhly et al. Molecules. 2022. Vol. 27. Article ID 5584. 32. Advances in delivery methods of Arthrospira platensis (Spirulina) for enhanced therapeutic outcomes. / O. A. Elfar et al. Bioengineered. 2022. Vol. 13. P. 14681–14718. 33. The antihypertensive, antimicrobial and anticancer peptides from Arthrospira with therapeutic potential: A mini review / G. E. B. Montalvo et al. Curr. Mol. Med. 2020. Vol. 20. P. 593–606. 34. Spray-dried Spirulina platensis as an effective ingredient to improve yogurt formulations: Testing different encapsulating solutions. / S. C Silva. et al. J. Funct. Foods 2019. Vol. 60. Article ID 103427. 35. Development of a carotenoid enriched probiotic yogurt from fresh biomass of Spirulina and its characterization. / P. Patel et al. J. Food Sci. Technol. 2019.Vol. 56. Article ID 3721–3731. 36. Kazemeini H., Azizian A., Ahmadi K. Preparation of Synbiotic Yogurt Sauce Containing Spirulina platensis Microalgae Extract and Its Effect on the Viability of Lactobacillus acidophilus. Biomed Res. Internonal. 2023. Vol. 2023. Article ID 8434865. 37. Beneficial Effects of Spirulina Consumption on Brain Health. / T. Trotta et al. Nutrients. 2022. Vol. 14(3. Article ID 676. 38. Chlorella and spirulina microalgae as sources of functional foods. / L. M. Andrade et al. Nutraceuticals Food Suppl. 2018. Vol. 6. P. 45–58. 39. Nutritional, sustainable source of aqua feed and food from microalgae: A mini review. / I. Haoujar et al. Int. Aquat. Res. 2022. Vol. 14. P. 1–9. 40. Spirulina- An Edible Cyanobacterium with Potential Therapeutic Health Benefits and Toxicological Consequences. / S. Gogna et al. J. American Nutr.Association. 2023. Vol. 42, No. 6. P. 559–572. 41. Consumer-Oriented Product Development: The Conceptualization of Novel Food Products Based on Spirulina (Arthrospira platensis) and Resulting Consumer Expectations. / S. Grahl et al. J. Food Qual. 2018. Vol. 2018. Article ID 1919482. 42. Sotiroudis T. G., Sotiroudis G. T. Health aspects of Spirulina (Arthrospira) microalga food supplement. J. Serb. Chem. Soc. 2013. Vol. 78. P. 395–405. 43. Madkour F. F., Kamil A. E. W., Nasr H. S. Production and nutritive value of Spirulina platensis in reduced cost media. Egypt. J. Aquat. Res. 2012. Vol. 38. P. 51–57. 44. Identification, characterization, and phylogenetic analysis of eight new inducible prophages in Lactobacillus. / Z. Pei et al. Virus Res. 2020. Vol. 286. Article ID 198003. 45. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera,emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. / J. Zheng et al. Int. J. Systematic Evolutionary Microbiol. 2020. Vol. 70, No. 4. P. 2782–2858. 46. Influence of culture conditions and preconditioning on survival of Lactobacillus delbrueckii subspecies bulgaricus ND02 during lyophilization. / Y. Shao et al. Journal of dairy science. 2014. Vol. 97, No. 3. P. 1270–1280. 47. Mechanisms of Action of Probiotics. / J. Plaza-Diaz et al. Adv. Nutr.(Bethesda, Md.). 2019. Vol. 10, Suppl. 1. P. S49–S66. 48. Siva Kiran R. R., Madhu G. M., Satyanarayana S. V. Spirulina in combating protein energy malnutrition (PEM) and protein energy wasting (PEW) – A review. J. Nutr. Res. 2015. Vol. 1. P. 62–79. 49. Hernández F.Y., Khandual S., López I. G. Cytotoxic effect of Spirulina platensis extracts on human acute leukemia Kasumi-1 and chronic myelogenous leukemia K-562 cell lines. Asian pacific J. Tropical Biomed.2017. Vol. 7. P. 14-19. 50. Spirulina platensis, a super food? / F. Jung et al. J. Cell. Biotechnol. 2019.Vol. 5. P. 43–54. 51. Spirulina paltensis: Food and function. / S. M. Hosseini et al. Curr. Nutr. Food Sci. 2013. Vol. 9. P. 189–193. 52. Environmental Impacts of Large-Scale Spirulina (Arthrospira platensis) Production in Hellisheidi Geothermal Park Iceland: Life Cycle Assessment. / A. Tzachor et al. Mar. Biotechnol. 2022. Vol. 24. P. 991–1001. 53. Effects of honey enrichment with Spirulina platensis on phenolics, bioaccessibility, antioxidant capacity and fatty acids. / M. Guldas et al. LWT Food Sci. Technol. 2022. Vol. 153. Article ID 112461. 54. Influence of Spirulina platensis Biomass over Some Starter Culture of Lactic Bacteria. / G. Mocanu et al. J. Agroaliment. Process. Technol. 2013. Vol. 19. P. 474–479 55. Sengupta S., Bhowal J. Optimization of Ingredient and Processing Parameter for the Production of Spirulina platensis Incorporated Soy Yogurt Using Response Surface Methodology. J. Microbiol. Biotechnol. Food Sci. 2017. Vol. 6. P. 1081–1085. 56. Application of Spirulina platensis on ice cream and soft cheese with respect to their nutritional and sensory perspectives. / T. W. Agustini et al. J. Teknol. 2016. Vol. 78. P. 245–251. 57. Ebid W. M. A., Ali G. S. Elewa N. A. H. Impact of Spirulina platensis on physicochemical, antioxidant, microbiological and sensory properties of functional labneh. Discov Food. 2022. Vol. 2. Article ID 29. 58. Kazemeini H., Azizian A., Ahmadi K. Preparation of Synbiotic Yogurt Sauce Containing Spirulina platensis Microalgae Extract and Its Effect on the Viability of Lactobacillus acidophilus. BioMed Res. Int. 2023. Vol. 2023. Article ID 8434865. |
Appears in Collections: | 162 - "Біотехнологія та біоінженерія" (Магістри) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2024_BT_M_162z-BT-13m_Ofilenko N.O..pdf Restricted Access | 1.28 MB | Adobe PDF | View/Open Request a copy | |
Protocol_2024_BT_M_162z-BT-13m_Ofilenko N.O..pdf Restricted Access | 50.32 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.