Please use this identifier to cite or link to this item:
https://repo.btu.kharkov.ua/handle/123456789/59336
Title: | Антропогенний вплив на темпи розмноження чорноморської діатомової водорості (Climaconeis scalaris Brébisson) |
Other Titles: | Anthropogenic influence on reproduction rates of Black Sea diatom algae (Climaconeis scalaris Brébisson) |
Authors: | Ткаченко, Денис Вячеславович |
metadata.dc.contributor.advisor: | Гноєвий, І. В. |
metadata.dc.contributor.affiliation: | Державний біотехнологічний університет Кафедра біотехнології, молекулярної біології та водних біоресурсів |
Keywords: | антропогенний тиск на море;біологічні індекси чутливості до забруднення;діатомові бентосні водорості;таксономія;морфологія та розмноження водоростей;anthropogenic pressure on the sea;biological indices of sensitivity to pollution;diatom benthic algae;taxonomy;morphology and reproduction of algae |
Issue Date: | 2024 |
Publisher: | Харків: ДБТУ |
Citation: | Ткаченко Д. В. Антропогенний вплив на темпи розмноження чорноморської діатомової водорості (Climaconeis scalaris Brébisson): кваліфікаційна робота магістра: спец. 207 Воднi бiоресурси i аквакультура; наук. кер. І. В. Гноєвий. Харків: ДБТУ, 2024. 64 с. |
Abstract: | Мета кваліфікаційної роботи – вивчити структуру бентосної популяції та темпи
розмноження діатомових водоростей (Climaconeis scalaris Brébisson) у Чорному морі в районі
Одеси для оцінки антропогенного впливу на них, стану первинної продуктивності та
забруднення акваторії.
Для виконання мети поставлені наступні завдання:
1. Дослідити таксономічний та морфологічний склад діатомових водоростей.
2. Визначити домінуючі види та щільність діатомових бентосних водоростей у Одеській
акваторії.
3. Визначити трофічний індекс діатомових водоростей.
4. Визначити індекс чутливості до забруднення діатомових водоростей.
5. Визначити біологічний індекс діатомових водоростей.
6. За результатами загальних індексів дати висновок про антропогенний вплив на темпи
розмноження чорноморських діатомових водоростей. Тhe purpose of the qualification work is to study the structure of the benthic population and the rate of reproduction of diatom algae (Climaconeis scalaris Brébisson) in the Black Sea in the Odesa region in order to assess the anthropogenic impact on them, the state of primary productivity and pollution of the water area. To fulfill the goal, the following tasks are set: 1. To study the taxonomic and morphological composition of diatoms. 2. Determine the dominant species and density of diatom benthic algae in the Odesa water area. 3. Determine the trophic index of diatom algae. 4. Determine the index of sensitivity to diatom pollution. 5. Determine the biological index of diatom algae. 6. Based on the results of general indices, give a conclusion about anthropogenic influence on the rates of reproduction of Black Sea diatom algae. |
URI: | https://repo.btu.kharkov.ua//handle/123456789/59336 |
metadata.dcterms.references: | 1. Apoya-Horton M.D., Gretz M.R. (2006). The life of diatoms in the world’s oceans. J Phycol. 41:379–391. 2. Armbrust E.V. (2009). Movement modalities and responses to environmental changes of the mudflat diatom Cylindrotheca closterium (Bacillariophyceae) Nature.458:184–192. 3. Arrigo K.R. (2014). The evolution of diatoms and their biogeochemical functions. Ann Rev Mar Sci. 7:438–467. 4. Benoiston A., Bittner L. (2017). Sea Ice Ecosystems. Philos Trans R Soc B Biol Sci. 371:201-229. 5. Bohórquez J., Papaspyrou S. (2017). Selective silicate-directed motility indiatoms. Front Microbiol. 8:246-283. 6. Bondoc K.G., Gillard J. (2016). Different types of diatom-derived extracellular polymeric substances drive changes in heterotrophic bacterial communities from intertidal sediments. Nat Commun. 8:105-129. 7. Buck J.M., Bártulos C.R. (2019). Viable diatoms and chlorophyll a in continental slope sediments off Cape Hatteras, North Carolina. NatCommun. 11:416-450. 8. Cahoon L.B., Thomas C.J. (1994). Lhcx proteins provide photoprotection viathermal dissipation of absorbed light in the diatom Phaeodactylum tricornutum. Deep Res Part II. 41:767–782. 9. Coelho H., Serôdio J. (2009). Endogenous versus environmental control of vertical migration by intertidal benthic microalgae. J Exp Mar Bio Ecol. 380:97–104. 10. Coelho H., Vieira S. (2011). Effects of desiccation on the photosynthetic activity of intertidal microphytobenthos biofilms as studied by optical methods. Eur J Phycol. 45:270–281. 11. Cohn S.A., Bahena M, Davis J.T. (2004). Environmental factors influencing diatom cell motility Diatom Res. 18:166–179. 12. Cohn S.A., Disparti N.C. (1994). Characterisation of the diatom photophobic response to high irradiance. J Phycol. 31:817–828. 13. Cohn S.A., Munro J.D. (2003). High energy irradiation at the leading tip of moving diatoms causes a rapid change of cell direction. Diatom Res. 17:224–243. 14. Cohn S.A., Pickett-Heaps J.D. (1999). The effect of temperature and mixed species composition on diatom motility and adhesion. Diatom Res. 15:192–206. 15. Consalvey M., Underwood G.J.C. (2004). Reproductive properties of diatoms significant for their cultivation and biotechnology. Diatom Res. 18:180–202. 16. Davidovich N.A., Podunai Y.A. (2015). The ups and downs of life in a benthic biofilm: Migration of benthic diatoms. Diatom Res. 61:152–160. 17. De Tommasi E., Rogato A. (2017). Secondary Plastids of Stramenopiles. Mar Genomics. 34:1–19. 18. Dorrell R.G., Bowler C. (2017). Diatom Frustule Morphogenesis and Function: a Multidisciplinary Survey, 1st edn. Elsevier Ltd. 19. Drum R.W., Gordon R. (2003). Diatom locomotion. Trends Biotechnol. 20:324–328. 20. Edgar LA, Pickett-Heaps J.D. (1984). Star Trek replicators and diatom nanotechnology. Prog Phycol Res. 4:46–88. 21. Ellegaard M., Lundholm N. (2016). Primary production of the biosphere: Integrating terrestrial and oceanic components J Appl Phycol. 27:3294–3306. 22. Field C.B., Falkowski P.G. (1998). The fascinating diatom frustule – can it play a role for attenuation of UV radiation? Science. 280:236–240. 23. Frankenbach S., Reis V. (2019). Evidence for gravitactic behaviour in benthic diatoms. Cont Shelf Res. 181:45–56. 24. Frankenbach S., Martinez M. (2014). Functional resilience of PSII, vertical distribution and ecosystem-level estimates of subsurface microphytobenthos in estuarine tidal flats. Eur J Phycol. 48:428–435. 25. Goss R., Lepetit B. (2015). Intracellular metabolic pathway distribution in diatoms and tools for genome-enabled experimental diatom research. J Plant Physiol. 171:12–32. 26. Gruber A., Kroth P.G. (2017). Biodiversity of NPQ. Philos Trans R Soc B Biol Sci. 371:2016-2048. 27. Hess S.K., Mecking S. (2018). Co-existence and survival of diatoms on sand grains. Eur J Lipid Sci Technol. 121:1–27. 28. Jewson D.H., Lowry S.F., Bowen R. (2006). Production of chemicals from microalgae lipids – status and perspectives. Eur J Phycol. 40:130–146. 29. Kemp A.E.S., Villareal T.A. (2013). Dark metabolism: a molecular insight into how the Antarctic sea-ice diatom Fragilariopsis cylindrus survives long-term darkness. Prog Oceanogr. 118:5–23. 30. Kennedy F., Martin A., Bowman J.P. (2019). High diatom production and export in stratified waters – A potential negative feedback to global warming. New Phytol. 222:674–691. 31. Kingston M.B. (1999). The origin and evolution of the diatoms: their adaptation to a planktonic existence. In: Falkowski PG, Knoll A (eds) Evolution of Primary Producers in the Sea. Estuaries. 23:81-96. 32. Kooistra H., Medlin L., Mann D. (2007). Wave effects on the vertical migration of two benthic microalgae: Hantzschia virgata var. intermedia and Euglena proxima. Elsevier Academic Press, Amsterdam, pp 206–249. 33. Kvernvik A.C., Hoppe C.J.M., Lawrenz E. (2018). Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. J Phycol. 53:460–470. 34. Lavaud J., Goss R. (2014). Fast reactivation of photosynthesis in arctic phytoplankton during the polar night1. Springer Netherlands, Dordrecht. 35. Lavaud J., Rousseau B., Gorkom H.J. (2002). Prospects in diatom research. Plant Physiol. 128:1397–1406. 36. Lopez P.J., Allen A.E., Bowler C. (2005). Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Curr Opin Biotechnol. 17:170–186. 37. Lyon B., Mock T. (2014). Insights into global diatom distribution and diversity in the world’s ocean. Biology (Basel). 4:55–80. 38. Malviya S., Scalco E., Audic S. (2016). Polar Microalgae: New Approaches towards Understanding Adaptations to an Extreme and Changing Environment. Proc Natl Acad Sci. 112:1515–1525. 39. Mann D.G., Vanormelingen P. (2013). Diatoms in Arctic regions: Potential tools to decipher environmental changes. J Eukaryot Microbiol. 61:413–420. 40. Miettinen A (2018). An inordinate fondness? the number, distributions, and origins of diatom species. Polar Sci. 4–19. 41. Mock T., Medlin L.K. (2012). The biology of biofouling diatoms and their role in the development of microbial slimes. Academic Press, pp 244–284. 42. Molino P.J., Wetherbee R. (2008) Genomics and Genetics of Diatoms. In: Advances in Botanical Research. Biofouling. 23:364–379. 43. Nakov T., Beaulieu J.M., Alverson A.J. (2018). Diurnal heterogeneity in silicic acid fluxes in shallow coastal sites: Causes and implications. New Phytol. 218:461–473. 44. Longphuirt S., Ragueneau O., Chauvaud L. (2009). Accelerated diversification is related to life history and locomotion in a hyperdiverse lineage of microbial eukaryotes (Diatoms, Bacillariophyta). Estuar Coast Shelf Sci. 81:494–502. 45. Poulin M., Daugbjerg N., Gradinger R. (2011). Diatom gliding is the result of an actinmyosin motility system. Mar. Biodivers. 40:12–28 46. Poulsen N.C., Spector I., Spurck T.P. (1999). The pan-Arctic biodiversity of marine pelagic and sea-ice unicellular eukaryotes: A first-attempt assessment. Cell Motil Cytoskeleton. 42:21–33. 47. Ragni R., Cicco S., Vona D. (2017). Milking diatoms for sustainable energy: Biochemical engineering versus gasoline-secreting diatom solar panels. J Mater Res31:278–291. 48. Ramachandra T. V., Mahapatra D.M., Karthick B., Gordon R. (2009).Biosilica from diatoms microalgae: Smart materials from bio-medicine to photonics. Ind Eng Chem Res. 47:8768–8788. 49. Raven J.A. (2017). The cost of photoinhibition. Eur J Phycol. 51:505–522. 50. Raven J.A. (2011) The possible roles of algae in restricting the increase in atmospheric CO2 and global temperature. Physiol Plant. 141:86–104. 51. Ruban A., Lavaud J., Rousseau B. (2004). Growth physiology and fate of diatoms in the ocean: Photosynth Res. 81:164–175. 52. Sarthou G., Timmermans K.R., Blain S., Tréguer P. (2005). The super-excess energy dissipation in diatom algae: Comparative analysis with higher plants. A review. J Sea Res. 52:24–42. 53. Sauer J., Wenderoth K., Rhiel E. (2002). Microphytobenthos vertical migratory photoresponse as characterised by light-response curves of surface biomass. Diatom Res. 16:188–203. 54. Serôdio J., Coelho H., Cruz S. (2006). Effects of salinity, light and time on the vertical migration of diatom assemblages. Estuar Coast Shelf Sci. 67:546–556. 55. Sims P.A., Mann D.G., Medlin L.K. (2006). Nitrogen inputs into the euphotic zone by vertically migrating Rhizosolenia mats. Phycologia. 44:360–402. 56. Singler H.R., Villareal T.A. (2005) Evolution of the diatoms: insights from fossil, biological and molecular data. J Plankton Res. 26:544–556. 57. Sugie K., Kuma K. (2008). J Plankton Res 30:1245–1255. 58. Tirichine L., Rastogi A., Bowler C. (2017). Recent progress in diatom genomics and epigenomics. Resting spore formation in the marine diatom Thalassiosira nordenskioeldii under iron- and nitrogen-limited conditions. Curr Opin Plant Biol.35:45–55. 59. Tréguer P., Bowler C., Moriceau B. (2018). Influence of diatom diversity on the ocean biological carbon pump. Nat Geosci. 10:26–37. 60. Tréguer P.J., De La Rocha C.L. (2013). The World Ocean Silica Cycle. Ann Rev Mar Sci. 4:476–501. 61. Tuchman N.C., Schollett M.A., Geddes P. (2006). Broad-scale predictability of carbohydrates and exopolymers in Antarctic and Arctic sea ice. Hydrobiologia.560:166–177. 62. Underwood G.J.C., Aslam S.N., Michel C. (2013). Differential Heterotrophic Utilization of Organic Compounds by Diatoms and Bacteria under Light and Dark Conditions. Proc Natl Acad Sci. USA. 111:15733–15739. 63. Underwood G.J.C., Kromkamp J. (1999). Upward transport of oceanic nitrate by migrating diatom mats. Adv Ecol Res. 28:92–153. 64. Villareal T.A., Pilskaln C., Brzezinski M. (1999). Primary production by phytoplankton and microphytobenthos in estuaries. Nature. 396:422–425. 65. Villareal T.A., Pilskaln C.H., Dennett M. (2014). Towards an understanding of the molecular regulation of carbon allocation in diatoms: the interaction of energy and carbon allocation. Peer J. 3:113-152. 66. Wagner H., Jakob T., Wilhelm C. (2017). Responses of estuarine intertidal microphytobenthic algal assemblages to enhanced ultraviolet B radiation. Philos Trans R Soc Lond B Biol Sci. 371:2016-2039. 67. Waring J., Baker N.R., Underwood G.J.C. (2007). Upward nitrate transport by phytoplankton in oceanic waters: balancing nutrient budgets in oligotrophic seas. Glob Chang Biol. 12:1397–1413. 68. Wasmund N. (1989). The regulation of carbon and nutrient assimilation in diatoms is significantly different from green algae. Estuar Coast Shelf Sci. 27:650–656. 69. Welsby H.J., Hendry K.R., Perkins R.G. (2016). Micro-autoradiographic determination of the viability of algae inhabiting deep sediment layers. Estuar Coast Shelf Sci. 175:123–134. 70. Wilhelm C., Büchel C., Fisahn J. (2006). The role of benthic biofilm production in the mediation of silicon cycling in the Severn Estuar. Protist. 156:90–124 |
Appears in Collections: | 207 - "Водні біоресурси та аквакультура" (Магістри) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2024_M_207_VB_13m_Tkachenko.pdf Restricted Access | 1.42 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.