Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
https://repo.btu.kharkov.ua/handle/123456789/59309
Назва: | Перспективи штучного розведення стерляді (Acipenser ruthenus) на півдні України |
Інші назви: | Prospects of artificial breeding of the sterlet (Acipenser ruthenus) in the south of Ukraine |
Автори: | Боровинський, Максим Володимирович |
Науковий керівник : | Безуглий, М. Д. |
Місце роботи: | Державний біотехнологічний університет Кафедра біотехнології, молекулярної біології та водних біоресурсів |
Ключові слова: | аквакультура;генетичні модифікації стерляді;нерест;норми годівлі;осетрівництво;популяція стерляді в Дунаї;aquaculture;sterlet genetic modifications;spawning;feeding standards;stock farming;sterlet population in the Danube |
Дата публікації: | 2024 |
Видавництво: | Харків: ДБТУ |
Бібліографічний опис: | Боровинський М. В. Перспективи штучного розведення стерляді (Acipenser ruthenus) на півдні України: кваліфікаційна робота магістра: спец. 207 Воднi бiоресурси i аквакультура; наук. кер. М. Д. Безуглий; Харків, 2024. 78 с. |
Короткий огляд (реферат): | Мета кваліфікаційної роботи – дослідити перспективи штучного розведення
стерляді В Україні та вплив різних білкових раціонів з низьким вмістом жиру на
темпи росту стерляді, вирощеної в рециркуляційній системі аквакультури.
Для вирішення мети були поставлені завдання:
1. Дослідити ефективність нормованої годівлі стерляді в контрольованих
умовах.
2. Розробити попередню програму заселення стерляді в річку Дунай;
3. Визначити можливості аквакультури та ефективність розведення стерляді в
рибних господарствах.
4. Дослідити генетичну мінливість стерляді. The purpose of the qualification thesis is to investigate the prospects of artificial breeding of sterlet in Ukraine and the influence of various protein diets with low fat content on the growth rates of sterlet grown in a recirculating aquaculture system. To solve the goal, the tasks were set: 1. To investigate the effectiveness of standardized feeding of sterlets under controlled conditions. 2. To develop a preliminary program for the settlement of sterlets in the Danube River; 3. Determine the possibilities of aquaculture and the effectiveness of sterlet breeding in fish farms. 4. To study the genetic variability of the sterlet. |
URI (Уніфікований ідентифікатор ресурсу): | https://repo.btu.kharkov.ua//handle/123456789/59309 |
Використані джерела: | 1. Adámek, Z., Sukop, I. Diet and Growth of 1+ Siberian Sturgeon, Acipenserbaerii in Alternative Pond Culture, Turkish Journal of Fisheries and Aquatic Sciences, 2007. 7: 153-160. 2. Aho, T., Björklund, M. Impacts of effective population size on genetic diversity in hatchery reared Brown trout (Salmo trutta L.) populations. Aquaculture, 2006, 253, 244-248. 3. Akbulut, B., Alp, E. Effect of the Feeding Frequency with Restricted Feeding Rate on Growth, Feed Conversion and Body Composition of Juvenile Russian and Stellate Sturgeon in Recirculating System, Journal of Applied Ichthyology, 2013, 27: 169-175. 4. Allendorf, F.W., Genetic drift and the loss of alleles versus heterozygosity. Zoo Biology, 1986, 5, 181-190. 5. Arnold, M.L. Natural Hybridization and Evolution; Oxford Series in ecology and Evolution; Oxford University Press: Oxford, UK, 1997. 6. Banarecu, P. Pisces-Osteichthyes Fauna Republicii Populare Romine. Ed: Academiei Republicii Populare Romine. 1964. 13. 7. Bemis, W.E.; Kynard, B. Sturgeon Rivers: An Introduction to Acipenseriform Biogeography and Life History. Environ. Biol. Fishes, 1997, 48, 167–183. 8. Birstein, V.J., Waldman J.R., The threatened status of acipenseriform species: a summary. Environmental Biology of Fishes, 1997, 48, 427-435. 9. Birstein, V.B., Bemis, W.E. How many species are there within the genus Acipenser? Environ. Biol.Fish. 1997. 48: 157-163. 10.Birstein, V. B. Sturgeons and paddlefishes: threatened fishes in need of conservation. Conserv. Biol. 1993. 7:773-787. 11.Bronzi, P., Gessner, J., (). Global sturgeon aquaculture production: an overview, Journal of Applied Ichthyology, 2011. 23: 168-178. 12.Bogár, K.; Kovács, G. Optimizing the Gonadoliberin Dosage and Evaluating the Egg Quality in the Preseason and Seasonal Artificial Reproduction of Pond-reared Sterlet Acipenser ruthenus. Anim. Reprod. Sci., 2022, 247, 107097. 13.Çelikkale, M.S., Timur, M. Influence of Acclimation to the Cold Water on Growth Rate of Russian Sturgeon Juveniles (Acipenser gueldenstaedtii, Brandt&Ratzenburg, 1833), Turkish Journal of Fisheries and Aquatic Sciences, 2002. 2(2): 137-140. 14.Cibert, C., Meunier, F.J. Morphological screening of carp, C. carpio: relationship between morphology and fillet yield, Aquatic Living Resources, 1999, 12(1): 1-10. 15.Chebanov, M.S., Galich, E.V. Sturgeon Hatchery Manual, FAO Fisheries and Aquaculture Technical Paper 558, Ankara, 2010. pp. 306. 16.Cvijanović, G., Lenhardt, M. Optimisation and standardization of primers for sterlet (Acipenser ruthenus L.) and beluga (Huso huso) microsatellite loci. Book of Abstracts. IV Congress of the Serbian Genetic Society, Tara, 2009, 1-5 June, Serbia: 23. 17.Deng, D.F., Conklin, D.E. White sturgeon (Acipenser transmontanus) require both n-3 and n-6 fatty acids, Aquaculture, 1998. 161: 333-335. 18.Do, C.; Ovenden, J.R. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Res., 2014, 14, 209–214. 19.Duman, M., Dartay, M.,. Changes in meat yield and chemical composition of mirror carp (Cyprinus carpio L.,1758) fillets after hot-smoked, Doğu Anadolu Bölgesi Araştırmaları, 2007. 5 (3): 186-190. 20.Earl, D.A.; von Holdt, B.M. STRUCTURE HARVESTER: A Website and Program for Visualizing STRUCTURE Output and Implementing the Evanno Method. Conserv. Genet. Resour., 2012, 4, 359–361. 21.Evanno, G.; Goudet, J. Detecting the Number of Clusters of Individuals Using the Software Structure: A Simulation Study. Mol. Ecol., 2005, 14, 2611–2620. 22.Fazekas, G.; Kovács, B. Genetic Analysis of Sterlet (Acipenser ruthenus) Related to Restocking Program in Hungary. Res. J. Agricult. Sci., 2018, 50, 166–170. 23.Feledi, T., Ronyai, A.. Preliminary Results of Intraspecific Sterlet Hy- brid (Siberian starlet x Sterlet) Rearinig Under Intensive Conditions, Aquaclture in Central and Eastern Europe: present and Future, The II. Assembly NACEE. 2011. 274-76. 24.Filipiak, J., Trzebiatowski, R., (). Comparison of The Effects of Cage–Rearing of Sterlet (Acipenser ruthenus) and Russian × Siberian Sturgeon (Acipenser gueldenstadetdti × A.baeri) Hybrid Fry in Cooling Water, Electronic Journal of Polish Agricultural Universities, 1999, 2 (2): 03. 25.Fopp-Bayat, D.; Kucinski, M. Genetic Analysis of Six Sterlet Populations—Recommendations for The Plan of Restitution in the Dniester River. Iran.S J. Fish Sci., 2015, 14, 634–645. 26.Fopp-Bayat, D., Woznicki P. Microsatellite DNA analysis of sterlet (Acipenser ruthenus Brandt) from the five European river drainage areas. W: Aktualny stan i aktywna ochrona naturalnych populacji ryb jesiotrowatych zagrożonych wyginięciem. Red. R. Kolman, A. Kapusta. Wyd. IRS.: 2008, pp. 223-234. 27.Friedrich, T.; Gessner, J. Sturgeon Re-Introduction in the Upper and Middle Danube River Basin. J. Appl. Ichtyol., 2019, 35, 1059–1068. 28.Gershanovich, A.D., Taufik, L.R. Feeding dynamics of sturgeon fingerlings Acipenseridae. Depending on food concentration and stocking density, Journal of Fish Biology, 1992. 41: 425-434. 29.Gessner, J.; Friedrich, T. Acipenser ruthenus. The IUCN Red List of Threatened Species. 2022. 30.Gessner, J.; Suciu, R. New Microsatellite Multiplex PCR Sets for Genetic Studies of the Sterlet Sturgeon, Acipenser ruthenus. Env. Biotech., 2017, 13, 11–17. 31.Giberson, A.V., Litvak, M.K. Effect of Feeding Frequency on Growth, Food Conversion Efficiency, and Meal Size of Juvenile Atlantic Sturgeon and Shortnose Sturgeon, North American Journal of Aquaculture, 2003, 65: 99-105. 32.Gringevsky, M.V. Evaluation of the contemporary status of sturgeons in the Dnieper River basin. The Sturgeon Quarterly, 1995, 3, 9. 33.Guti, G.; Gaebele, T. Long-Term Changes of Sterlet (Acipenser ruthenus) Population in the Hungarian Section of the Danube. Opusc. Zool. Bp., 2009, 40, 17–25. 34.Guti, G. Past and Present Status of Sturgeons in Hungary and Problems Involving their Conservation. Riv. Syst., 2008, 18, 61–79. 35.Hasan, M.R., Tacon, A.G.J. Study and analysis of feeds and fertilizers for sustainable aquaculture development. Fisheries Technical Paper, 2007, 497, Rome, pp. 531. 36.Henderson-Arzapalo, A.; King, T.L. Novel Microsatellite Markers for Atlantic sturgeon (Acipenser oxyrinchus) Population Delineation and Broodstock Management. Molec. Ecol. Notes, 2002, 2, 437–439. 37.Hensel, K., Holcík, J. Past and current status of sturgeons in the upper and middle Danube River. Environ. Biol. Fish. 1997. 48:185-200. 38.Hochleithner, M., Gessner, J. The Sturgeon and Paddlefishes (Acipenseriformes) of the World: Biology and Aquaculture, AquaTech Publications. 1999, pp. 165. 39.Holčík, J.; Mészáros, J. Sturgeons in the Slovakian Rivers of the Danube River Basin: An Overview of Their Current Status and Proposal for Their Conservation and Restoration. J. Appl. Ichtyol., 2006, 22, 17–22. 40.Hung, S.O., Deng, D.F. Sturgeon, Acipenser spp. In: Webster, C.D., Lim, C.E. (Eds), Nutrient Requirements and Feeding of Finfish for Aquaculture. CABI Publishing New York, 2002, pp. 34-358. 41.Hutchinson, W.F.; Shipley, P. Micro-checker: Software for Identifying and Correcting Genotyping Errors in Microsatellite Data. Molec. Ecol. Notes., 2004, 4, 535–538. 42.Janković, D. Ecological research on Danubian sterlet. Institute Biologique Beograd, Monographies, 1958, 2, 1-131. 43. Jarić, I., Gaĉić, Z. Seasonal changes in condition, hepatosomatic index and parasitism in sterlet (Acipenser ruthenus L.). Turkish Journal of Veterinary & Animal Sciences. 2009, 33 (3), 209-214. 44. Jecu, E., Esanu, V. Technological Aspects Regarding Rearing of The Acipenser ruthenus Species, Albino Variety to Second Summer Old, IN Brates Sturgeons Station, Lucrăristiin Ńifice Zootehniesi Biotehnologii, 2008. 41 (2): 69-74. 45.Jombart, T. Adegenet: A R Package for the Multivariate Analysis of Genetic Markers. Bioinformatics, 2008, 24, 1403–1405. 46.Kaczmarczyk, D.; Fopp-Bayat, D. Assemblage of Spawning Pairs Based on Their Individual Genetic Profiles – As Tool for Maintaining Genetic Variation within Sturgeon Populations. Aquac. Res., 2013, 44, 677. 47.Kaushik, S.J., Paba, A. Studies on the nutrition of Siberian sturgeon, (Acipenser baeri). In. Utilization of digestible carbohydrates by sturgeon, Aquaculture, 1989. 76: 97-107. 48.King, T.L., Spidle, A.P., Microsatellite DNA variation in Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) and cross-species amplification in the Acipenseridae. Conservation Genetics, 2001, 2, 103-119. 49.Köksal, G., Kındır, F.M. Growth Performance and Feed Conversion Efficiency of Siberian Sturgeon Juveniles (Acipenser baeri) Reared in Concrete Raceways, Turkish Journal of Veterinary and Animal Sciences, 2002. 24: 435-442. 50.Kolman, R., Zdanowski B., Reproduction of sterlet Acipenser ruthenus in farm Ishkan in Ukraine – an introduction to rebuild the populations at risk of extinction. Komunikaty Rybackie, 2012, 4, 28-31. 51.Kosaka, N.; Nagahata, T. Universal Fluorescent Labeling (UFL) Method for Automated Microsatellite Analysis. DNA Res., 2002, 9, 173–178. 52.Kovács, B.; Fazekas, G. A Tokfajok Genetikai Háttere és Erőforrásai In A Tokalakúak Biológiája és Tenyésztése; Urbányi, B., Horváth, Á., Eds.; Vármédia Print kft: Gödöllő, Hungary, 2019; pp. 77–107. 53.Krpo, J., Hegediš, A. Ecological characteristics of the Danubian fish species. In: The Danube in Yugoslavia (Eds. Janković, D. & Joviĉić, M.), 1994, 159-173. 54.Lacy, R.C. Analysis of founder representation in pedigrees: founder equivalents and founder genome equivalents. Zoo Biology, 1989, 8, 111-123. 55.Leary, R.F.; Knudsen, K.L. Developmental stability and enzyme heterozygosity in rainbow trout. Nature 1983, 301, 71–72. 56.Lenhardt, M., Nikĉević, B. Changes in sterlet (Acipenser ruthenus L.) catch and length frequency distribution in the Serbian part of the Danube River during the twentieth century. Ecohydrology & Hydrbiology, 2004, 2: 193-197. 57.Losos, J.B.; Ricklefs, R.E. Adaptation and diversification on islands. Nature 2009, 457, 830–836. 58.Ludwig A., Reinartz R. First evidence of hybridization between endangered sterlets (Acipenser ruthenus) and exotic Siberian sturgeons (Acipenser baerii) in the Danube River. Biological Invasions, 2009, 11, 753-760. 59.Macias, J.A.G., Hernández, M.R.E. Carcass and meat quality of rainbow trout, Oncorhynchus mykiss Richardson, produced in the northwest of Chihuahua State, Hidrobiologica, 2004. 14 (1): 19-26. 60.May, B.; Kincaid, H.L. Genetic Variation at Microsatellite Loci in Sturgeon: Primer Sequence Homology in Acipenser and Scaphirhynchus. Can. J. Fish. Aquat. Sci., 1997, 54, 1542–1547. 61.McQuown, E.C., Tranah, G.J. Microsatellite analysis of genetic variationin sturgeon (Acipenseridae): new primer sequences for Scaphirhynchus and Acipenser. Transactions of the American Fisheries Society, 2000, 129, 1380-1388. 62.Memiş, D., Ercan, E.. Effects of different diets on growth performance and body composition of Russian sturgeon (Acipenser gueldenstaedtii), Journal of Applied Ichthyology, 2006, 22: 287-290. 63.Memiş, D., Zarkua, Z. Growth and Survival Rate of Russian Sturgeon (Acipenser gueldenstaedtii) Larvae from Fertilized Eggs to Artificial Feeding, Turkish Journal of Fisheries and Aquatic Sciences, 2009, 9: 47-52. 64.Mikheev, P.B.; Elchenkova, O.N. Artificial Enhancement of Sturgeon Stock in Freshwater Reservoirs: A Case Study on Sterlet Acipenser ruthenus of the Kama Reservoir. Aquac. Fish., 2024, 9, 287–294. 65.Moghim, M., Taghavi, M.J. Development of disomic single-locus DNA microsatellite markers for Persian sturgeon (Acipenser persicus) of the Caspian Sea. Iranian Journal of Fisheries Sciences, 2013, 12 (2), 389-397. 66.Mohseni, M., Pourkazemi, M., Bahmani, M., Falahatkar, B., Pourali, H.R., Salehpour, M. Effects of feeding rate and frequency on growth performance of yearling great sturgeon, Huso huso, Journal of Applied Ichthyology, 2006. 22: 278-283. 67.Moore, B.J., Medrano, J.F. Protein requirement of hatchery produced juvenile white sturgeon (Acipenser transmontanus), Aquaculture, 1988. 71(3): 235-245. 68.Myrvold, K.M.; Kennedy, B.P. Density dependence and its impact on individual growth rates in an age-structured stream salmonid population. Ecosphere 2015, 6, 1–16. 69.Nei, M. Molecular evolutionary genetics. Columbia University Press, New York, 1987, pp. 39–46. 70.Neuburg, J.; Friedrich, T. First Description of a Remnant Population of Sterlet (Acipenser ruthenus, LINNAEUS 1758) in the Eastern Austrian Danube. Nat. Conserv., 2023, 75, 126473. 71.Ognjanović D, Simonović P. Morphometrics of two morphs of sterlet, Acipenser ruthenus L., in the middle course of the Danube River (Serbia). Journal of Applied Ichthyology. 2008, 24, 126- 130. 72.Østbye, K.; Hindar, K. Morphological Divergence and Origin of Sympatric Populations of European Whitefish (Coregonus lavaretus L.) in Lake Femund, Norway. J Evol Biol., 2005, 18, 683–702. 73.Pante, M., McMillan, I. Inbreeding levels in selected populations of rainbow trout, Oncorhynchus mykiss. Aquaculture, 2001, 192, 213 – 224. 74.Peakall, R., Smouse, P.E. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research, Molecular Ecology Notes, 2006, 6(1), 288–295. 75.Peakall, R.; Smouse, P.E. Genetic Analysis in Excel. Population Genetic Software for Teaching and Research-an Update. Bioinformatics, 2012, 28, 2537–2539. Park, S.D.E. The Excel Microsatellite Toolkit. Trypanotolerance in West African Cattle and the Population Genetic Effects of Selection. Ph.D. Thesis, University of Dublin, Dublin, Ireland, 2001. 76.Pekárik, L.; Iampor, F. Current Stocking Program of the Sterlet (Acipenser ruthenus, L.) Can Negatively Shape Its Genetic Variability in the Middle Danube. Knowl. Manag. Aquat. Ecosyst., 2019, 420, 19. 77.Pikitch, E.K., Chakrabarty, P. Status, trends and management of sturgeon and paddlefish fisheries. Fish-Fish. 2005, 6:233-265. 78.Piry, S.; Cornuet, J.-M. BOTTLENECK: A Computer Program for Detecting Recent Reductions in the Effective Size Using Allele Frequency Data. J. Heredity, 1999, 90, 502–503. 79.Poleksić, V., Gaĉić, Z., Rašković, B. Liver, gills and skin histopathology and heavy metal content of the Danube sterlet (Acipenser ruthenus Linnaeus, 1758). Environmental Toxicology & Chemistry. 2010, 29 (3), 515-521. 80.Pritchard, J.K.; Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics, 2000, 155, 945–959. 81.Prokes, M., Peňáz, M., Baránek, V. Growth of starlet Acipenser ruthenus under experimental and farm conditions of the Czech Republic, with remarks on other sturgeons. Actauniv. agric. et silvic. Mendel. Brun., 2011, 6: pp. 281-290. 82.Rad, F., Köksal, G., Kındır, M. Growth Performance and Food Conversion Ratio of Siberian Sturgeon (Acipenser baerii Brandt) at Different Daily Feeding Rates, Turkish Journal of Veterinary and Animal Sciences, 2003. 27: 1085-1090. 83.Reddy, P.V.G.K. Genetic Resources of Indian Major Carps; FAO Fisheries and Aquaculture Technical Paper 387; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2000; p. 76. 84.Reinartz, R.; Ludwig, A. Population Genetic Analyses of Acipenser ruthenus as a Prerequisite for the Conservation of the Uppermost Danube Population. J. Appl. Ichtyol., 2011, 27, 477–483. 85.Ristić, M. Fish migration in the Danube River and its tributaries, its influen ce on the status and population dynamics of the economically important fishes and on fisheries. Ribarstvo Jugoslavije. 1970, 25: 1-15. 86.Rodzen, J.A., May, B. Inheritance of microsatellite loci in the white sturgeon Acipenser transmontanus. Genome, 2002, 45, 1064–1076. 87.Rónyai, A. Overview of Sturgeons Related Activities in HAKI. Presented at Visit of WWF Delegation to HAKI, Szarvas, Hungary. 2012; Unpublished Results. 88.Ronyai, A. The effect of different synthetic gonadotrop-releasing hormone analogues and their combinations with an antidopaminergic compound on the reproduction performance of sterlet (Acipenser ruthenus L.), Aquaculture Research, 2009. 40: 315-322. 89.Samsun, N., Kalayci, F. Seasonal Variations of Meat Yield and Protein & Oil Rates of Turbot (Scophthalmus maeoticus Pallas, 1811) Caught in Sinop Region (Black Sea), Science and Engineering Journal of Fırat University, 2005. 17 (4): 629-635. 90.Şebnem, A. Ş., Okumuş, İ., (). Evaluation of Meat Yield, Proximate Composition and Fatty Acid Profile of Cultured Brook Trout (Salvelinus fontinalis Mitchill, 1814) and Black Sea Trout (Salmo trutta labrax Pallas, 1811) in Comparison with their Hybrid, Turkish Journal of Fisheries and Aquatic Sciences, 2011. 11: 261-271. 91.Şener, E., Savaş, E.. Effects of Dietary Lipids on Growth and Fatty Acid Composition in Russian Sturgeon (Acipenser gueldenstaedtii) Juveniles, Turkish Journal of Veterinary and Animal Sciences, 2005, 29: 1101-1107. 92.Şener, E., Yıldız, M., Savaş, E.. Effect of Vegetable Protein and Oil Supplementation on Growth Performance and Body Composition of Sturgeon Juveniles (Acipenser gueldenstaedtii Brandt, 1833) at Low Temperatures. Turkish Journal of Fisheries and Aquatic Sciences, 2006. 6: 23-27. 93.Sion, C., Băcanu, M.G. The influence of pellets quality on the growth of sterlet, in recirculating aquaculture system, AACL Bioflux, 2011. 4, 2: 129-130. 94.Sloss, B.L.; May, B. Microsatellite Analysis of Genetic Variation in Sturgeon: New Primer Sequences for Scaphirhynchus and Acipenser. Trans. Am. Fish. Soc., 2000, 129, 1380–1388. 95.Stanić, B., Grubor-Lajšić, G. & Kovaĉević, R. Assessing pollution in the Danube River near Novi Sad (Serbia) using several biomarkers in sterlet (Acipenser ruthenus L.). Ecotoxicology and Environmental Safety, 2006, 65, 395-402. 96.Šteˇch, L.; Linhart, O.; Shelton, W.L.; Mims, S.D. Minimally invasive surgical removal of ovulated eggs of paddlefish (Polyodon spathula). Aquac. Int. 1999, 7, 129–133. 97.Strat, D.; Gheorghe, I.F. Conservation Status and Effectiveness of the National and International Policies for the Protection and Conservation of Sturgeons in the Danube River and Black Sea Basin. Diversity, 2023, 15, 568. 98.Stuart, J.S., Hung, S.S.O. Growth of juvenile white sturgeon (Acipenser transmontanus) fed different proteins, Aquaculture, 2003. 78 (3-4): 303-316. 99.Tamura, K., Nei, M. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 2011. 28 (10), 2731-2739. 100. Tretyak, A., Onuchenko, A. Problems of sterlet (Acipenser ruthenus L.) population conservation and the application of aquaculture potential in Ukraine. W: Aktualny stan i aktywna ochrona naturalnych populacji ryb jesiotrowatych zagrożonych wyginięciem. Red. R. Kolman, A. Kapusta. Wyd. IRS: 2008, pp. 83-88. 101. Van der Oost, R., Vermeulen, N.P.E. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, 2003, 13, 57–149. 102. Wedekind, C. Sexual selection and life-history decisions: implications for supportive breeding and the management of captive populations. Conservation Biology, 2002, 16, 1204– 1211. 103. Wei, Q.W.; Li, L. Sturgeon aquaculture in China: Progress, strategies and prospects assessed on the basis of nation-wide surveys (2007–2009). J. Appl. Ichthyol. 2011, 27, 162–168. 104. Welsh, A., May, B. Development and standardization of disomic microsatellite markers for lake sturgeon genetic studies, Journal of Applied Ichthyology, 2006, 22, 337-344. 105. Welsh, A.B.; May, B. Identification of Microsatellite Loci in Lake Sturgeon, Acipenser fulvescens, and Their Variability in Green Sturgeon. A. medirostris. Molec. Ecol. Notes, 2003, 3, 47–55. 106. Williot, P., Ludwig, A. Artificial spawning in cultured sterlet sturgeon, Acipenser ruthenus L., with special emphasis on hermaphrodites, Aquaculture, 2005, 246: 263-273. 107. Williot, P., Pourkazemi, M., Zhuang, P. Status and management of Eurasian sturgeon: An overview. International Review of Hydrobiology, 2002, 87, 483-506. 108. Xu, R., Hung, S.S.O., German, J.B., (). White sturgeon tissue fatty acid compositions are affected by dietary lipids, Journal of Nutrition, 1993, 123 (10), 1685-1692. 109. Zane, L.; Congiu, L. Isolation and Characterization of Microsatellites in the Adriatic Sturgeon (Acipenser naccarii). Molec. Ecol. Not., 2002, 2, 586–588. 110. Zhang, X.; Chen, J. Genetic variation and relationships of seven sturgeon species and ten interspecific hybrids. Genet. Sel. Evol. 2013, 45, 21. |
Розташовується у зібраннях: | 207 - "Водні біоресурси та аквакультура" (Магістри) |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
2024_M_207_VB_13m_Borovyns_kyy_M_V.pdf Restricted Access | 1.45 MB | Adobe PDF | Переглянути/Відкрити Запит копії |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.