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ON BAYESIAN ESTIMATION OF RELIABILITY FUNCTION FOR LIFETIME DISTRIBUTIONS
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This paper is a sequel to [1], wherein we proposed a simple procedure to construct the joint prior and posterior
distributions of Weibull parameters based on the underlying reliability function estimates in two time cross—sections.
In this paper, we extend the procedure in three aspects: a) the prior data can now be taken in terms of a simple proba-
bility paper plot, b) the posterior now includes not only posterior estimates of distribution parameters, but also the pos-
terior estimate of the underlying reliability function along with the respective credibility intervals, and c) we show that
the proposed procedures can be applied to any parametric lifetime distribution, not necessarily limited to the location—

scale family.

Introduction. Bayesian estimation of parametric reli-
ability functions has been considered by many authors. A
critical first step is the specification of the prior distribu-
tion of the reliability function parameter(s). Some authors
omit this step and treat it as a given, i.e., the (joint) prior
distribution of parameter(s) is assumed to be known. A
few authors do discuss procedures of constructing the
(joint) prior distribution based on expert estimates or life
test data. Under the assumption of independence, one can
specify marginal priors of individual distribution parame-
ters, thus arriving to their joint prior. For example, Ca-
navos & Tsokos [2] assume independent priors for the
shape (uniform) and scale (inverse gamma) parameters of
the Weibull distribution. Meeker & Escobar [3] discuss
constructing the joint prior distribution of the Weibull
distribution based on the Weibull shape parameter and a
certain quantile of the underlying CDF. They make a
point that in case of heavy censoring (which is often the
case in reliability data analysis), specifying the shape pa-
rameter and an appropriately chosen quantile of the un-
derlying distribution would be more robust than specify-
ing individual priors for the shape and the scale parame-
ters.

Kaminskiy & Krivtsov [1] proposed a simple proce-
dure to construct the joint prior distribution of Weibull
parameters based on the estimates of the underlying relia-
bility function in two time cross—sections. The outcome
of the procedure was the joint prior distribution of
Weibull parameters as well as the posterior point estimate
of the underlying reliability function at any time of inter-
est. The procedure turned out to be quite useful in practi-
cal applications. As of 2019, it has been cited in over 90
publications [4] and was implemented in the 2013 release
of the JMP® reliability analysis software package by the
SAS Institute [5]. It must be mentioned that the procedure
discussed in [3] is also implemented in the same package
as an alternative method of specifying the prior.

In this paper [6], we extend the procedure proposed
in [1] in three aspects: a) the input (prior) data can be tak-
en in the form of a simple probability paper plot, b) the
output includes not only posterior estimates of the distri-
bution parameters, but also the posterior estimate of the
underlying reliability function along with the respective
credibility intervals, and c) we show that the proposed
procedures can be applied to any parametric lifetime dis-
tribution. These extensions make the procedure much
more usable for practical engineering applications.
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Proposed approach. Without loss of generality, con-
sider a two—parameter lifetime distribution with the cu-
mulative distribution function F(t; ¢, f), wherein « and
are the scale and the shape parameters, respectively.

A penultimate step in the Bayesian estimation of the
reliability function is the posterior joint density of the
aforementioned parameters, which is given by:
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where n(¢, f) and m (e, f) — the posterior and prior
joint PDF of the parameters distribution, respectively;

L — the likelihood function relative to current data.

Since the denominator in (1) does not depend on pa-
rameters « and £ (as it integrates to a constant), it is suffi-
cient to estimate only the numerator. Assume that the
prior data about parameters « and £ is available in a
form of a random sample from the underlying lifetime
distribution:
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where t; — observed lifetime;

0; — censoring indicator, such that §; = 1 if # is a com-
plete observation or d; = 0 if #; is a right—censored obser-
vation.

Further assume that current data about parameters o
and f are available in a form of another random sample:
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where 7; — observed lifetime;

% — censoring indicator.

The following bootstrap simulation procedure is pro-
posed to estimate 7, (a, f) L(data | a, ) as well as the

posterior reliability function.

Random resampling with replacement from sample (3)
is performed n times. A sample is generated at each step i
as:
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Distribution parameters are estimated using the maxi-
mum likelihood procedure:
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where the likelihood function L is defined as:
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Then, the posterior likelihood function can be calcu-
lated as:

LP; = L(&. B, Ty (T y2) @ va). s (T ). ()
The sample reliability function is:
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The posterior joint distribution of parameters is esti-
mated as:
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The posterior reliability function R(S,#) is obtained as:

R(5.t) = ;15 .5(5;)/m (10)

The lower LCLs and upper UCLs two—sided 100% (1—
o) credible limits are found as those satisfying the follow-
ing equations:

R(LCL;. t) = a/2
RUCLyt) =1—af2,

(11)
(12)

Numerical Example. In this section, the Weibull dis-
tribution is used as an example, but the procedure being
proposed can be extended to any parametric lifetime dis-
tribution (not limited to the location—scale family). In
Figure 1, consider a Weibull probability plot of a random
sample as in (2) with 39 complete and 11 censored failure
times. The MLE estimates of the shape and scale parame-
ters of this sample are ﬁ' =1.7, @ = 43.8, respectively.

Weibull Probability Plot

Maximum Likelihood Estimation
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Figure 1 — A random Weibull sample to be used for
constructing the joint prior distribution of Weibull
parameters

As discussed in Section II, we obtain bootstrap sam-
ples (4) of the same size as the original sample — see Fig-
ure 2. To each bootstrap sample, we fit a Weibull distribu-
tion, thus obtaining a pair of Weibull parameters (5). By
repeating the sampling procedure n times, we obtain n
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pairs of Weibull parameters, on which their joint distribu-
tion is constructed.

Probability

Figure 2 — Some bootstrap samples from the Weibull
sample in Fig. 1

Figure 3 shows the joint prior distribution of Weibull
parameters constructed based on n = 10,000 bootstrap
samples from the sample in Figure 1. The highest prior
density corresponds to = 50.9, and f=2.16.
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Figure 3 — The joint prior distribution of Weibull
parameters constructed based on 10,000 bootstrap
simulations from the Weibull sample in Fig. 1.

Using the following Weibull sample, see Figure 4, as
the current data (3) we obtain the joint posterior distribu-
tion of Weibull parameters based on (9) — see Figure 5.
The highest posterior density now corresponds to o =
52.1, and g =2.05.
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Figure 4 — A random Weibull sample to be used as
current data for constructing the joint posterior
distribution of Weibull parameters



Weibull Scale and Shape Parameters: Posterior Distribution
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Figure 5 — The joint posterior distribution of Weibull pa-
rameters

Finally, using (10)—(12), we obtain the posterior
Weibull reliability function with respective credibility
intervals — see Figure 6.
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Figure 6 — The posterior Weibull reliability functions with
95% two—sided credibility intervals

Concluding Remarks. In practical reliability engi-
neering, construction of the joint prior PDF for the pa-
rameters of the underlying lifetime distribution is a chal-
lenging task. This paper presented a simple procedure of
Bayesian estimation of the Weibull distribution based on
a single random sample characterizing prior data and a
single random sample characterizing current data.

The Weibull distribution is discussed as an illustra-
tive example, but the proposed procedure can be extended
to any parametric lifetime distribution, not necessarily
limited to the location—scale family. Moreover, it can
even be used with empirical distributions without assum-
ing any parametric structure.
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AHoOTaNIisA

BAMECIBCBHKA OLIIHKA ®YHKIIi HAJIMHOC-
TI IJISI TUITY TPUBAJIOCTI ) KUTTS

Kpusuos B., ®pankmreitn M.

Lz cmamms - npodoesicents Hautoi nonepeorvoi po-
bomu, 6 axiu mu 3anpononysanu baecoscoky npoyedypy
no6yooeu CniibHO20 anpiopHO2O i AnOCMepPiOpHO20 PO3-
nodiny napamempis Beiibyina-I'nedenko, nokiadanouucsy
Ha oyinku QyuKyii HadiiHocmi 6 2-X nepepizax Gici uacy.
YV yiti pobomi mu poswupunu npoyedypy 6 mpvox acnek-
max: a) anpiopui 0ani Modcymov menep Oymu npeocmas-
aeHi y euensndi “‘cupux’” Hampayiosanv 00 6iomMoeu, 0)
anocmepiopHi OYiHKU menep KI04aioms He Juuie napa-
Mempu po3nooiny, aie i camy anocmepiopHy @YHKYi
Haoditnocmi pazom 3 GIONOGIOHUMU THMEPBALAMU OOCHO-
8ipHOCMI, 8) MU NOKA3YEMO, WO 3anponoOHOB8AHA Npoye-
dypa moodice Oymu 3acmocoeana He auuie 00 po3nooiny
Beiibynna-I'neoenxo, ane i 00 ycvoeo cimelicmea macui-
mab-gopma.

AHHOTALINA

BAWMECOBCKAS OIIEHKA ®YHKIHNHU
HAJEXHOCTH JJIS1 PACIIPEJEJIEHNHN
THIIA BPEMEHMU )KU3HU

Kpusnos B., ®pankmireiin M.

Jlannas cmamoesi - npooondcerue Hautell npeovloy-
wetl pabomul, 8 KOMOpPou mvl npedrodxcunu baiiecosckyro
npoyeodypy NOCMPOeHUs: COBMECMHO20 aNPUOPHO2O U
anocmepuopHo2o pacnpedenenus napamempos Beibyinia-
T'neodenko, nonazasicy Ha OyeHKU GYHKYUU HAOEHCHOCU 8
2-x epemenHbIx cewenusx. B amoti pabome muvl pacuupu-
U npoyeoypy 6 mpex Acnekmax: a) anpuopHvie OaHHble
Mozym menepb Obimb npeocmasienvl 6 sude "coipvix”
Hapabomox 00 omkasa, 6) anocmepuopuvie OYeHKU me-
nepb GKIIOYAION He MONbKO NApaMempbl pAcnpeoeneHus,
HO U camy anocmepuophyio yHKyuio Ha0esCHOCmu eme-
cme ¢ cOOMEemCmayioWUMU UHMEPBALAMU OOCTNOBEPHO-
cmu 8) NOKA3AHO, 4MO NPeONONCeHHAs. npoyedypa Mo-
Jrcem OblMb NPUMEHEHA He MOJbKO K pPAcnpeoeieHuo
Betibynna-I'nedenxko, HO u KO Gcemy cemelucmey Mac-
wma6b-gpopma.



