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An important characteristic of the g—renewal process, and of great practical interest, is the g—renewal equation,
which represents the expected cumulative number of recurrent events as a function of time. The problem is that the
g-renewal equation does not have a closed form solution, unless the underlying event times are exponentially distrib-
uted. The Monte Carlo solution [10], although exhaustive, is computationally demanding. This paper offers a simple-to-
implement (in an Excel spreadsheet) approximate solution, when the underlying failure—time distribution is Weibull.
The accuracy of the proposed solution is in the neighborhood of 2%, when compared to the respective Monte Carlo
solution. Based on the proposed solution, we also consider an estimation procedure of the g—renewal process parame-

ters.
ACRONYMS
CDF cumulative distribution function;
CIF cumulative intensity function;
ECIF empirical cumulative intensity function;
GPR generalized renewal process;
HPP homogeneous Poison process;
IFR increasing failure rate;
MC Monte Carlo;
NHPP non-homogeneous Poison process;
ORP ordinary renewal process;
PDF probability density function;
SE standard error;
SS sum of squares.
NOTATION
V., S, — age of the system after and before the n—th re-
pair, respectively;
q — restoration (or repair effectiveness) factor;
t — time;
/40] — g-renewal function denoting the expected cu-

mulative number of events (failures);

ft) — probability density function;

F@) — cumulative distribution function;

A, @  —respectively, the scale and the shape parameters
of Weibull distribution;

e — Gamma function;

u o — the mean and the standard deviation of the fail-
ure time distribution;

N — number of simulations;

P (1), Qu(?) — polynomials with order L and M, respectively;
a,b, ¢, y, A, B, C, D — numerical constants.

INTRODUCTION. In repairable system reliability
analysis, one could consider four states, to which a system
can be repaired upon a failure. These are: 1) "good-as-
new" 2) "same-as-old", 3) "better-than-old-but-worse-
than-new", 4) "worse-than-old". If upon a failure, a re-
pairable system is restored to as "good-as-new" condition
and the time between system failures can be treated as an
independent and identically distributed (IID) random
variable, then the failure occurrence can be modeled by
the Ordinary Renewal Process (ORP). If upon a failure
the system is restored to the "same-as-old" condition, then

the appropriate model to describe the failure occurrence
can be the Non-Homogeneous Poisson Process (NHPP).
The time between consecutive failures, in this case, is not
an IID random variable. A more general model is the so-
called Generalized Renewal Process (GRP), which treats
ORP and NHPP as special cases — see Figure 1.

The GRP or g—renewal process, originally introduced
by Kijima and Sumita [13,14], has gained an increasing
popularity in modeling and analysis of recurrent events,
specifically in reliability applications [5, 8, 11, 20]. The
GRP is introduced using the notion of virtual age:

Vn = an 5

where V,, and S, is the system's age after and before
the n-th repair, respectively, and ¢ is the restoration (or
repair effectiveness) factor.
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It is clear that for ¢ = 0, the age of the system after
the repair is "re-set" to zero, which corresponds to the
ORP. With g =1, the system is restored to the "same-as-
old" condition, which is the NHPP. The case of 0 < ¢ <1
corresponds to the intermediate "better-than-old-but-
worse-than-new" repair assumption.Finally, with ¢ > 1,
the virtual age is 4, > S, , so that the repair damages
(ages) the system to a higher degree than it was just be-
fore the respective failure, which corresponds to the
"worse-than-old" repair assumption. As such, all four
considered cases of ¢ can be modeled by the GRP.

Under the GRP, the expected number of events (fail-
ures) in (0, 7] is given by a solution of the so-called
g-renewal function [14]:
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and F(¢) and f(¢) are the cumulative distribution function
(CDF) and probability density function (PDF) of the un-
derlying failure time distribution. Note that g(#|0) = f{¢).

The closed form solution of the g—renewal equation
does not exist, and even numerical solutions are difficult
to obtain, since each equation contains a recurrent infinite
system [6]. The Monte Carlo (MC) solution discussed by
Kaminskiy and Krivtsov [10], although exhaustive, is
computationally demanding. The present paper offers a
much simpler approximate solution, which can be imple-
mented in an Excel spreadsheet. Its accuracy approaches
the MC solution for all practical purposes.

TWO-POINT PADE APPROXIMANTS FOR
ORDINARY RENEWAL EQUATION. In the first
step, we consider ordinary renewal process, which is used
to model the situation with restoration to "good-as-new"
condition (the so-called perfect repair assumption). This
process corresponds to a particular case of the g—renewal
process, when restoration factor, ¢ =0. The time-

depended renewal function, W,(t), gives the expected

numbers of replacements and satisfies the integral equa-
tion

t
Wo(t) = F(0)+ [ F(t —7)dWy(2) Q)
0

where F'(t) is the CDF of the underlying failure time

distribution. In this paper, we consider the most popular
Weibull distribution with the CDF expressed by

F(t)=1-¢ " )

in the time interval ¢ > 0 . The scale and shape parameters
are restricted to the range 4 >0 and « > 0, respectively.

A solution of Equation (1) was obtained in [18] as a
series expansion

Wi (1) = kf a (20) 3)
|

Coefficients of the series are defined by a simple recur-
sive

4 =n
A =17 -n4
procedure i @)
A=y = 2 Vi
i=l1
where y; = w , T (x) is Gamma function, and
D4
ap =—-
T (ke +1)

The partial sum of the series (3) with several terms

Wy(t,a) = ay(A)”" +...+a,(A)" 5)

gives a good approximation of the solution for small val-
ues of time and can be considered an asymptotic represen-

tation of the solution when At — 0. If At >1, the con-

vergence of the series is very slow (especially if o >1)
and additional enhancement of the solution is required.
For this reason, many authors considered another well
known asymptotic representation [2] for large values of ¢ :
ok — 12

3 ift >®
2u

(6)

t
Wo(t,a) ~—+
Y2

where u, o are the mean and the standard deviation of
the underlying failure time distribution, respectively. For
the Weibull distribution, we have:

1 1 , 1 2 2
u=—Il+—), o =—T(1+—)—u".
A a 12 a

The asymptotic expansions (5) and (6) complement
each other, but they are not accurate enough for the entire
range of ¢ from zero to infinity. For that reason, solution
(5) was represented as a modified Padé function in [7].

The [L/M] Padé function [1] is defined as a rational func-
tion, where numerator P; (¢) and denominator Q,, () are
polynomials with order L and M, respectively. The Padé
functions were used in [4] to obtain a better solution in
time interval [0, t,] for the renewal process with trun-

cated Gaussian underlying distribution function. Value
ty was defined as a switch-over point from Padé function

to asymptotic function (6) under the condition that the
obtained spline is close to the exact solution. This method
was extended in [7] to the case when the underlying dis-
tribution function is Weibull. In addition, modified Padé
functions [7] are used to construct the uniform interpolant
joining (5) and the first term of asymptotic (6). The abso-
lute relative error in the latter case reaches 5%, if ¢ =5
and increases with the increase of shape parameter « . In
both cases, some additional significant calculations are
required to obtain coefficients of Padé function.

We suggest using two-point Padé functions in the
form

a (A +..+a,(A)"* + A(A1)"*t
1+ B(A1)"®

This simple function has the same asymptotic expansion
as (5) when ¢ — 0. To satisfy asymptotic representation
(6) we have to put

Wo (1) =

(7

2a,4° B
— A=
o-—u H
To make sure that the rational function (7) does not have

poles, we selected number »n such that a, >0 if

B:

02—y2>0 and a, <0 if 02—y2<0. Under this

condition, B >0 and the denominator of the rational
function is not equal to O for any values of time. The ac-
curacy of (7) depends on n. We defined the optimal
value n =17 if @ >1 and n=8 if & <1. In Figure 2, the
result of the calculation is represented for the case when
a =5. The solid curve corresponds to the Monte Carlo

solution, while the dashed curves represent asymptotic
formulas (5) and (6).
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Figur 2 - CIF of ordinary renewal process (a =5 ).

The accuracy of approximation (7) with respect to the
"exact" Monte Carlo solution is shown in Table 1. The
results of the proposed two-point Pade approximation (7)
and the respective Monte Carlo method (with number of

trials N =107 ) is represented at corresponding time val-
ues (under A =1) when the maximum error was reached.

The last row of the table shows the standard error (SE) of
the Monte Carlo solution.

Table 1. The renewal function using two-point Pade
approximation (7) compared to Monte Carlo solution
under various values of o and with A =1

Shape parameter, o 3 4 5 6 7
Two-point Pade 1,3453 | 1,0703 | 1,2630 | 1,2396 | 0,7907
Monte Carlo 1,3597 | 1,1087 | 1,2136 | 1,1590 | 0,9755
Maximum error 1% 3,5% 4% 7% 19%
Time at max error 1,6 1,4 1,6 1,6 1,2
Monte Carlo SE 0,00074{0,00056 | 0,00062 | 0,00058 | 0,00045

Approximation (7) is accurate enough for most prac-
tical cases, if shape parameter o < 5. For greater values
of «, the renewal function is oscillating [3] and the sim-
ple formula cannot be derived in a general case. More
accurate (but also more complicated) methods can be ap-
plied, e.g., [7], [3]- A simple approximation for the re-
newal function with the underlying increasing failure rate
(IFR) distribution (& >1) was obtained in [9] for a rea-
sonably practical time interval.

We improved (7) in interval 3 <« <5 by adding an
additional term C to the numerator of (7):

(A" +..+a,(AD)" + AA)"“t+C

Wo(t) = = (®)
1+ B(At)
where
(1,428 (22))(A2)"™
— 3
c=@3) T+ (20)" ez
0 ifa<3

All coefficients in this formula were selected to mini-
mize the maximum relative error with respect to the
Monte Carlo solution. The maximum error decreases to
2,7% in interval 3 < a <5 after this adjustment.

APPROXIMATE CUMULATIVE INTENSITY
FUNCTION OF G — RENEWAL PROCESS. In gen-
eral, the problem of approximation of the cumulative in-
tensity function (CIF) of the g-renewal process is much
more complicated. Because of the additional restoration
factor ¢ we have to consider a function of 3 variables
F(t,a,q) . The scale parameter can be eliminated by ap-
propriate substitution of the time variable. Vaurio ob-
tained an approximate solution of the g-renewal equation
in [19]. However, our Monte Carlo simulations revealed a
considerable limitation of his solution: it is accurate, if
virtual time g¢ is small or large, but it yields a significant
error when gt ~ 1. Our approach is based on the follow-
ing properties of the CIF.

3.1. Restoration factor q

We assume to have an already reasonably accurate

solution W, (#,&r), if g=0, that is the case of the ORP. If

q =1, we have the Nonhomogeneous Poisson Process the
with exact solution

W(t,a)=t* )

Our attempt is to construct an approximate solution
in interval 0 < ¢ <1. We suggest an heuristic formula for

the CIF approximation:

W(t,a,q) = Wy(t,a)+q” (W (t,0) - Wy (t,@)) (10)

For any y # 0 we have included two previous cases when
q =0 and g=I. To construct function y we first consider
general properties of the CIF.

3.2. Time variable t
The CIF function has an asymptotic solution

W(t,a,q)=t" ift >0 (11)

for any o and ¢g. Formula (10) satisfies this asymptotic
because W, (t,a) = Wy(t,ax) if t > 0.
3.3. Shape parameter o

Formula (10) is the exact solution for & =1 with any
values of ¢ and ¢, because it corresponds to the exponen-
tial distribution function and W, (¢) =W, (¢) in this case.
In addition:

W (t) = Wy(t) if @ — 0 (12)

for any values of ¢ and ¢. To satisfy this last property we
havetoput y >0 if ¢ > 0.
3.4 Defining function y

To interpolate the CIF, we use Padé approximant for
y in the following form

2
_aa+ ba (13)
I+ca
assuming that y depends only on shape parameter « . We
will find limitations of this assumption later on.

Property (12) is included in (13). We can define the
coefficients of rational function (13) if solution is known
at some point. For each i-th point, we can use (10). Solv-
ing it for y, we obtain the following:

B In((W (1) =Wy (t)) | (W (1) =Wy (1)) )
a Ing;

(14)

i



and, finally, for the coefficients of Padé function, we have

ac; +ba12

(15)

Vi 1+Cal'

We selected only 3 "critical" points, which are shown
in the Table 2. All of them are from the range, which is
not covered by above mentioned properties (9-12).

Table 2. Points for approximation of function y

1 t q [04 F Fl FO Vi

1 5 0,5 | 0,5 [2,450|2,236] 3,910 |0,1973
2 2 0,5 2 2,862 4 1,883 | 1,112
3 2 0,5 5 [4318] 32 | 1,703 | 3,534

The result of solving (15) for these points is the following
a =0,3096;b = 0,2846; ¢ = 0,2909 (16)
The graph of (15) as a function of « is depicted in
Figure 3.
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Figur 3 - Function y depending on shape parameter « .

Thus, (8), (9), (10), (13) along with (16) provide the
approximate analytical solution for CIF of the g-renewal
process. We validated this approximation in interval
0<¢g<11, 0,5<a<5 and CIF <5 against the Monte

Carlo solution with 10 trials. The maximum relative
error of the approximation is 2,6% in interval
0,75<a<2. The error increases significantly when

a<0,75 or a>2 , because the assumption that y in

(13) depends only on « is valid only if 0,75<a <2.
We adjusted (13) to the case o > 2 by including de-

pendence y on all three variables ¢,a,q. We use poly-

nomial function in the following form:

y =Gy +(a—2)[ 4y + Byt +(0.5—q)(Cy+Dyt) ] (17)
where G, =1,112 is obtained from the condition that the
value of y obtained by (17) coincides with that obtained
by (13) if @ =2. To obtain values for coefficients A4,

and B, we consider two points for & =4 from Table 2.

Table 2. Points for approximation of function y if
2<a<5

i |t q a F F Fy v

1 |14 105 |4 1,647 | 3,842 | 1,108 | 2,344

2 |2 05 | 4 3,958 | 16 1,742 | 2,6855
Using these points, we obtain

Ay =0,2176, By =0,2846 . To identify coefficients C
and Dy, we used Monte Carlo results in interval
2 <a £5 and minimized the maximum relative error of
approximation 17), which yielded
Cy= 0,09, D, =-0,48.

We used similar approach in the case when « < 0.75

by considering the following polynomial approximation
of CIF:

7 =G +(0,75-a)[ 4 +B,t+(0,5-q)(C\+Dyt) ], (18)

where G; =0,3220 is obtained from the condition that
the value of » obtained by (18) coincides with that ob-

tained by (13) if @ =0.75. To obtain values for coeffi-
cients 4; and B;, we consider 2 points for ¢ =0,5 as
shown in Table 3.

Table 3. Points for approximation of function y if
a<0,75

it |4 a F F Fy I
1 |2 105 |05 [1,5068 |1,4142 [2,0491 [0,2274
15105 |0,5 14,4196 |3,8729 19,4142 10,1498
Using these points, we obtain

A4, =-0,3302, B, =-0,02391 . To identify coefficients C,
and D;, we used Monte Carlo results in interval
0,5<a<0,75 and minimized the maximum relative
error of approximation (18), which yielded C;=0,49, D ;=
—0,009. It is important to note that, ultimately, we joined
the above three approximation (15, 17, 18) in interval
0,5<a <5 and obtained a continuous function as a re-
sult.

To calculate the maximum relative error of the ob-
tained final approximation (15-18) with respect to the MC
solution, we selected 9 points from interval 0,5<a <5,

12 points from interval 0< ¢ <1,1 and 20 points for the

time variable under condition that C/F' <5 . In total, 2160
points were used. The results are summarized in Table 4.
As it follows from the table, the maximum error is 2,6%
in the most practically important intervals
0,5<a<3,0<¢<1.1 and CIF <5 . The upper limit for

a— interval can be extended to 5 with the maximum error
of 4,3%.

Table 4. Maximum relative error of the g—renewal
function with respect to the MC solution for various val-
ues of Weibull shape parameter

a 5 4 3 0,8 10,7510,7 10,6 10,5

Max error, % 4,3 13,7 12,5 1,3 |1,8 12,6 |2,0 |1,8 |1,9




GRP ESTIMATION USING THE APPROXI-
MATE CIF SOLUTION

4.1. Estimation procedure

The obtained approximations allow to efficiently
solve the "reverse" problem: the estimation of g-renewal
process parameters «,A, g . Kaminskiy & Krivtsov [10]

used the MC-based nonlinear least squares estimation and
Yaiiez, et. al [20] followed by Mettas & Zhao [16] used
the maximum likelihood estimation of the g-renewal
process. Our approach is based on the obtained approxi-
mations of CIF and an improved strategy of finding the
minimum of the sum of residual squares.

At first, we set g=1 (under which, CIF is numerically
equal to the cumulative hazard function of the underlying
Weibull distribution — see [12], and find initial estimates
of the shape and the scale parameters using the hazard
paper approach [17]. Then, we find the minimum of the
sum of residual squares with respect to the shape parame-

ter followed by the scale parameter. The process is re-
peated iteratively for each selected value of ¢ in interval
[0,1] until the desired accuracy for all parameters is
reached. When ¢ is changed in the loop, we use the esti-

mates of the shape and the scale parameters obtained at
the preceding step as the initial values.

4.2 Simulated Data Example

To test the accuracy of the described estimation pro-
cedure, we simulated the CIF of the g—renewal process
with the following parameters ¢=0,5, a=2,0 and
1/ 4 =10 with 10’ trials — see Table 5.

The fragment of calculation of residual sum of
squares (SS) is represented in Table 6. There is a clear
minimum of the residual sum of squares (Set 3), which is
reached when the g—renewal process parameters are close
to exact values ¢ =0,5, ¢ =1,9999 and 1/ 41 =9,9707.

Table 5. Input data generated by Monte Carlo solution

Time 1 2 4 6 8 10 12 14
CIF 0,009973 | 0,03968 | 0,1559 | 0,3405 | 0,5831 | 0,8732 1,2032 1,5686
MC SE | 5,5E-5 I,IE4 | 23E4 |3,6E4 |50E4 | 68E-4 8,0E-4 1,IE3

Table 6. Estimates of g—renewal process parameters
based on data in Table5

Table 7. CIF of the g—renewal process based on real
data

Time | 3 6 9 (12 | 15| 18 | 21 | 24 | 27

ECIF |0,03]0,09|0,14|0,2410,38{0,54(0,70(0,90|1,17

Set 1 Set 2 Set 3 Set 4 Set 5
q 0,46 0,48 0,50 0,52 0,54
1/4 (9,873 9,921 9,971 10,02 10,06
a 1,9999 |1,9999 |1,9999 1,987 1,973
SS  [1,26E- |3,55E- |4,69E-06 |9,08E- |1,78E-
04 05 06 05

We would like to emphasize that the running time is

extremely short. It took only 0,8 sec to calculate the result
with good accuracy on the computer with 2,51 GHz proc-
essor and 6,00 GB of RAM. For calculation of Gamma
faction in the above formula we used Lanczos

approximation [15], whose relative error is 2 - 10719,

4.3 Real Data Example

This example shows the practical application of the
proposed g-renewal process estimation. We use the Em-
pirical Cumulative Intensity Function (ECIF) estimated
from the automotive warranty data [11] — see Table 7.

In contrast to the previous example, we do not ob-
serve a clear minimum of the residual sum of squares —

see Table8. It fluctuates around 2-10in interval
0,8 < g <1. The residual SS shown in the last row of

Table 8 illustrates that identified combinations (sets) of
GRP parameters fit the data almost equally well. This
might be explained by three factors: a) a relatively high
random variability in the data causing the departure of the
ECIF from the ideal CIF of the g—renewal process, b) the
relatively low value of the ECIF (of 1.17), implying a
relatively low number of recurrent events, and, as a result,
the low accuracy in the estimation of the restoration pa-
rameter ¢, and c) a potential inaccuracy of the proposed
approximate solution used as the basis of the estimation
procedure.

Table 8. Estimates of g—renewal process parameters based on data in Table 7

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
q 1,0 0,96 0,92 0,88 0,84 0,80
1/ 25,07 24,95 24,82 24,68 24,53 24,39
a 1,907 1,917 1,927 1,939 1,95 1,963
SS 1,79E-03 1,84E-03 1,88E-03 1,94E-03 2,00E-03 2,06E-03




To verify the influence of the third factor above we
validated results using Monte Carlo method. We calcu-
lated CIF for two most "diverse" sets of g—renewal proc-
ess parameters from Table 8: Set 1 and Set 6. As it fol-

lows from Table 9, there is a small deference between the
CIF values obtained by Monte Carlo method and both of
them are good approximations of ECIF.

Table 9. Comparison with Monte Carlo method (10’ trials)

Time 3 6 9 12 15 18 21 24 27
ECIF 0,03 0,09 0,14 0,24 0,38 0,54 0,70 0,90 1,17
CIF (Setl) 0,0174 0,0653 0,142 0,245 0,375 0,532 0,713 0,920 1,15
SE (Set 1) 7,6E-5 1,5E-4 2,3E-4 32E-4 | 42E-4 |54E4 | 6,7E-4 | 83E-4 1,0E-3
CIF (Set 6) 0,0163 0,0633 0,140 0,245 0,375 0,534 0,716 0,922 1,15
SE (Set 6) 7,3E-5 1,5E-4 2,3E-4 3,IE-4 | 42E-4 |53E4 | 6,6E-4 |8,1E-4 | 99E4

For this real data set, we also tested the accuracy and
the computational efficiency of the estimation procedure
based on the proposed approximate solution of g—renewal
equation versus that based on the MC solution. The MC
method results are shown in Table 10. They are very close
to those represented in the Table 8. However, the running

time was significantly higher: 25 minutes vs. 0.8 sec. If
the number of MC trials is decreased to 10°, the process
of finding the minimum of the residual sum of squares
diverges because of the lack of accuracy of the MC
method. The estimation procedure based on the proposed
approximate solution is free from this drawback.

Table 10. Estimates of g—renewal process parameters
based on data in Table 7 using MC method

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
q 1,0 0,96 0,92 0,88 0,84 0,80
1/ 25,06 24,96 24,84 24,67 24,57 24,41
a 1,908 1,913 1,921 1,936 1,946 1,960
SS 1,77E-03 1,82E-03 1,87E-03 1,92E-03 1,99E-03 2,07E-03

CONCLUSIONS. In this paper, we proposed an ap-
proximate solution to the g—renewal equation for the case
of the underlying Weibull distribution. The proposed so-
lution is simple to implement, and it has a practically
comparable accuracy as the respective Monte Carlo solu-
tion.

We also used the proposed approximate solution as a
basis for the non-linear least squares estimation of the
GRP parameters. Compared to the MC-based estimation,
the proposed estimation is much more computationally
efficient and is almost similarly accurate.

Finally, we observed that for real-life data sets
(which are subject to statistical noise) one can find multi-
ple sets of estimates of the underlying Weibull parameters

and the restoration factor that yield practically equal fits
to the ECIF. This is to say that in the absence of prior
information, it would be difficult to explain whether the
difference between two ECIF's is caused by the difference
on the underlying distribution parameters or in the resto-
ration factors.
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AHHOTAIUSA

NMPUBJIN3UTEJIBHOE PEHIEHUE YPABHEHUSA
G-BOCCTAHOBJIEHUSI C BA30OBbIM
PACIIPEJEJIEHUEM BEUBYJUIA

Kpuenos B. B., Eskun A. 1O.

Baoicrotl xapaxmepucmuxoi g-60CCmMano8UmMenbHo20
npoyecca, makce npedcmasnalouell CyuwecmseeHHbll
npakmuyeckuil  uHWmepec, A6NAeMCcA  ypagHeHue  g-
60CCMAHOBNIEHUSA,  KOMOpoe — Xapakmepuzyem — mam-
oxcudanue CyMMapHo20 Yucia NOSMOPHBIX cOObIMUIl 6
@yuxyuu epemenu. Ilpobrema cocmoum 6 mom, 4mo
YpaeHeHue g-60CCMAHOGIEHUs. He UMeenm peuleHus 6
3AMKHYMOM 8Ude, KPOMe CIyuds IKCHOHEHYUAIbHO20 6a-
306020 pacnpedenenus. Pewenue Monme-Kapno [10]
Xomsa u ucuepnvigaioujee, HO 6 GbIYUCTUMETLHOM NIAHe
oocmamoyHo emkoe. B oanmoii cmamve paccmampuea-
emcs cpasHumenvHo npocmoe 8 peanusayuu (8 Excel)
npubausumenvroe peuienue, 01 cayuaa Beiibyrnosckozo
0azo060c0 pacnpedenenus. Tounocmv NpeonOHCeHHO2O
pewlenus He OMAUYAEemCs OM COOMBENCMEYIoueco pe-
wernusi Monme-Kapno 6onee uem na 2%. OcHogvieéasico Ha
NPeONIONCEHHOM peuleHuy, Mbl MAaKdxHce paccCMompenu

npoyedypy — OYyeHKU  Napamempo8  YDAGHeHUs — g-
60CCMAHOBICHUSL.
AHoTauis

IIPUBJIN3HE PO3B'SA3AHHSA PIBHAHHA
G-BIIHOBJIEHHA 3 BA3OBUM
PO3IO/IJIOM BEMBYJIA

Kpusnos B. B., €gkin O. 1O.

Baowciusoro xapaxmepucmuxoio g-8i0no8H020 npoye-
Cy, Wo npeocmasnae iCmomuull npaKmuyHuil inmepec €
DIBHAHHA ~ g-GIOHOBNIEHHS, sAKEe XAPAKMepu3ye Mam-
OYIKYBAHHA CYMAPHO20 YUCAA NOOill, WO NOBMOPIOIMbCA
v @yuxyii uacy. I[lpobrema nonseae 8 momy, wo y pieHsH-
HA g-8I0HOG/IEHHS HEMAE PilUeHHs Y 3AMKHEHOMY 8Uli, 3d
BUHAMKOM eKCNOHeHYianbHo20 6a306020 po3nodiny. Pi-
wenus Monme-Kapno [10] xoua i € euuepnnum, ane 8
004UCTIIOBANLHOMY NIAHI 0Ocumb €mHe. B cmammi pos-
2n0aEmobcsi NOpieHAHO npocme 6 peanizayii (6 Excel)
npubauszHe piuterns, 0 6UNaoKy 6az08020 poO3NOOLIEHHS
Betibyna. Tounicme 3anponono8ano2o piuieHus He iopiz-
HAEMbCS 810 8I0N08I0H020 piwenusi Monme-Kapno 0invu
nioic na 2%. Ipyumyiouucs na 3anpononosanomy piuenti,
MU MAKON*C PO3NAHYIU NPOYeoypy OYIHKU NaApamempie
DI6HANHA Z-8IOHOBIICHHS.



