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SUMMARY & CONCLUSIONS 

 

Engineering systems often contain some identical 

components (parts), the so–called "siblings". In the case 

of an automobile, these would be engine spark plugs, light 

bulbs, wheels, etc. These sibling components are typically 

coded with the same part number. When field (warranty) 

data are analyzed, a dilemma arises as to how to interpret 
a recurrent replacement of a sibling component belonging 

to a given system: as a secondary failure of the compo- 

nent that has already been replaced once, or as the first 

failure of the component's sibling(s)? 

From the stand point of root–cause analysis, the task 

is to understand whether recurrent failures are related to 

1) a particular sibling, which might be operating in inaus- 

picious conditions relative to other siblings, or 2) to any 

other siblings on the vehicle. One could attribute Sce- 

nario 1) to a system–level (e.g., system interaction) prob- 

lem, and Scenario 2) to a component–level (supplier qual- 

ity) problem. This is also critical in selecting an appro- 

priate probabilistic model for predicting the reliability of 

sibling components. In this paper, we propose a statistical 
approach that helps to resolve the above formulated di- 

lemma. 

 

1 INTRODUCTION 

 

Without the loss of (engineering) generality, consider 

a 4–cylinder petroleum engine with four identical spark 

plugs, which hereafter will be referred to as sibling parts 

(components), see Figure 1. All four spark plugs, for war- 

ranty tracking purposes, are coded with the same part 

number. This is unlike some other sibling components in 

the vehicle that may have special suffixes differentiating 

them (e.g., left and right mirrors, front and rear brake 
calipers, etc.). 

Now consider two consecutive warranty claims com- 

ing from the same vehicle and containing the same part 

number. The question becomes how to interpret the sec- 

ond claim: as 1) a repeat failure of the spark plug that has 

already been replaced once, or 2) as the first failure of its 

siblings? One could attribute Scenario 1 to a system– 

level (e.g., system interaction) problem repeatedly caus- 

ing the failure of a spark plug on a particular cylinder that 

might be creating stressful operating conditions – see Fig- 

ure 2. 
Scenario 2 could be interpreted as a component–level 

(e.g., supplier quality) problem “universally” affecting all 

spark plugs of the engine – see Figure 3. 

Obviously, the problem becomes more statistically 

complex, when warranty claims are coming from a popu- 

lation of  vehicles each containing sibling components. 

The correct choice between the two possible scenarios 

identified above provides an important engineering in- 
sight into the root–cause analysis of field failures. It also 

becomes critical in selecting an appropriate probabilistic 

model for predicting the reliability of sibling components. 

The rest of the paper is structured as follows. Section 

2 discusses probabilistic models suitable to model the two 

discussed scenarios for sibling components. Section 3 

reviews a statistical procedure helping to decide between 

the two scenarios both for single and multiple repairable 

systems. Finally, Section 4 discusses numerical examples 

that illustrate the use of the proposed approach. 
 

 

Figure 1 - An example of sibling components 

(spark plugs) coded with the same part number 

 

 

 
Figure 2 - A system–level problem repeatedly caus- 

ing the failure of a spark plug of the 1st cylinder that 

might be creating stressful operating conditions for that 

spark plug 
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Figure 3 - A component–level (e.g., supplier quality) 

problem “universally” affecting spark plugs of various 

cylinders 

 

2 PROBABILISTIC MODEL 

 

Under Scenario 1, related to one particular sibling, 

the incremental (inter–arrival) time to a recurrent failure 

is an independently and identically distributed (IID) ran- 

dom variable, which results in the ordinary renewal proc- 

ess (ORP) – see Figure 4. 

Scenarios 1 and 2. Kaminskiy and Krivtsov (Ref. 1) dis- 

cuss a Gini–Type index that helps to assess the proximity 

of a given renewal process to HPP. 

 

 

Figure 5 - Scenario 2 (multiple sibling failures) re- 

sults in superposition of Ordinary Renewal Processes at 

the system–level, with the resulting process no longer 
being a renewal process 

 

Assuming the nominally identical siblings, the prob- 

ability of system failure is related to the probability of a 

sibling’s failure through the competing risk model: 
 

ps  1  1  pc  
n

 (1) 
 

where: ps and pc are probabilities of system and sib- 

ling component failure, respectively, and n is the number 

of sibling components in the system. 

 

3 STATISTICAL PROCEDURE 
 

 
Figure 4 - Scenario 1 (single sibling failures) results in an 

Ordinary Renewal Process at the system–level 

 

Under Scenario 2, of multiple sibling failures, the 

system–level failure process is the superposition of indi- 

vidual ORP’s corresponding to each sibling – see Figure 

5. The incremental time to a recurrent failure, in this case, 

is not an IID, as the superimposed process, in general, is 

no longer a renewal process. 
Therefore, if the time between recurrent failures is an 

IID random variable, then it’s an indication of Scenario 1; 

otherwise – Scenario 2. Alternatively expressed, in case 

of one particular sibling, the time to a recurrent failure is a 

realization from the underlying renewal process, whereas 

in the case of multiple siblings, the time to a recurrent 

failure is the difference between consecutive realizations 

3.1 Single Repairable System 

 

In the case of a single repairable system (e.g., a sub- 

marine’s engine) the test statistic can be based on whether 

or not the times between successive recurrent failures is 

an IID random variable. There are several tests designed 

to verify the IID assumption against specific alternatives, 

such as structural breaks, serial correlation, or autoregres- 

sive conditional heteroskedasticity (Ref. 2). 

The simplest way to see if the inter–arrival times are 

identically distributed is to plot the cumulative number of 

recurrent failures as a function of time. Nonlinearity of 

such a plot would be an indication that inter–arrival times 

are not identically distributed. More formal is the Lewis– 

Robinson procedure (Ref. 3), which uses the following 
test–statistic: 

from the underlying failure time distribution. 

The power of the respective statistical procedure (to 

distinguish between the two scenarios) would be inversely 

proportional to the “proximity” of the siblings’ renewal 

Z = Z' 





(2) 

processes to the Homogeneous Poisson Process (HPP), 
i.e., when the times between failures are exponentially 

distributed. This is because the superposition of individ- 

ual HPP’s is also an HPP, i.e., a renewal process, in 

which case it becomes impossible to distinguish between 

where  and  are the sample mean and standard 
deviation of the inter–arrival times, and 
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 

 i 
 

Z' = 
   t  
i 1    2 

 
(3) 

example is the likelihood ratio test (Ref. 8). The test sta- 

tistic, for a two–parameter distribution, is 
 



is the test–statistic of the Laplace test (Ref. 5), where 

ti denotes cumulative failure–arrival times, T – the length 

of the observation period and r – total number of failures. 

If failure times originate from a renewal process, then Z 
approximately follows the standard normal distribution, 

based on which a respective hypothesis testing can be 

conducted. If the observation period is terminated at the 

last failure, then in the above equation for the Laplace 

test, T is replaced with tr , and r is replaced with (r –1). 

When assessing the adequacy of a renewal process, 

one has to also verify the assumption of independence of 

inter–arrival times. One method is to calculate a first– 

order serial correlation coefficient between the adjacent 

inter–arrival times (Ref. 4): 

 

χ = 2(L1+L1+···+Lk-L) (7) 
 

where L1… Lk are the log–likelihood functions of the 

distributions of failure inter–arrival times to the 1st, 2nd, 

and kth failures, respectively, and Lβ is the combined log– 

likelihood function for a common shape parameter β, and 

scale parameters αi : 

 

L = L1(1+2+···=k) (8) 

Under the assumption of the equality of shape pa- 

rameters, test statistic, χ approximately follows chi– 

square distribution with k–1 degrees of freedom, based on 
which respective hypothesis testing can be conducted. 

 

4. NUMERICAL EXAMPLE 

 

4.1 Single Repairable System 

1 

 1 

i1 
i   


i 1    (4) 

 

Consider a sample of system–level failure arrival 

times associated with sibling components, graphically 

depicted in Figure 6. As it follows from the figure, the 

When 1 =0  and  r  is  large,    r  1 approximately 
failure times appear to have no trend, which would be an 

indication of a renewal process with identically distrib- 
follows the standard normal distribution, based on which 

a respective hypothesis testing can be conducted. 

 

3.2 Multiple Repairable Systems 

 

In the case of multiple repairable systems (e.g., a 

population of automobiles) the test statistic can be based 

on comparing the distribution of times to the 1st occur- 
rence to the distribution of inter–arrival times to the 2nd 

occurrence, 3rd occurrence, etc. This can be done both 

non–parametrically and parametrically. 

For complete (non–censored) samples one can use 

the Kolmogorov–Smirnov test (Ref. 6–7) with the test 

statistic being based on the supremum of the set of dis- 

tances between the two CDF’s: 

uted failure inter–arrival times. 
The Laplace test statistic for this data set is Z = – 

1.07, and the Lewis–Robinson test statistic is Z = –1.34 

with the associated p–value of 0.18 thus confirming a 

renewal process. The first–order serial correlation coeffi- 

cient between the adjacent inter–arrival times is –0.011 

and     r  1  =  –0.035  with  the  associated    p–value  of 

0.97. All this numerical evidence is an indication of Sce- 

nario 1: failures of one particular sibling, i.e., a system 

interaction (not a component–level) problem. 

 

Dn,n '  sup F1,n t   F2,n ' t  (5) 

 

where F1(t) and F2(t) are empirical CDF’s of the first 

and the second samples of inter–arrival times, respec- 

tively, with the sample sizes of n and n’, respectively. 

For censored samples, we propose to construct the 
distribution of differences between empirical CDF’s at a 

time cross–section of interest (say, t0) : 

D
n,n '  t0   F

2,n ' t0 


(6) 

 

by repeatedly bootstrapping from the two distribu- 

tions under comparison. If this distribution of differences 

includes zero with a given probability (significance level), 

then the two distributions are not IID, and vice versa. 

Alternatively, one can use parametric procedures to 

compare k distributions of failure inter–arrival times. One 


1 

12

 i   i1 

 1 

i1 
   

2  1 

i 1 
   

2 

 

 

Figure 6 - Cumulative number of failures plotted as a 

function of the failure arrival times of a single repairable 

system 
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4.2 Multiple Repairable Systems 

 

In Figure 7, consider the Kaplan-Meier estimates of 

the empirical CDF’s of inter–arrival times to 1st and 2nd 

failures, respectively, coming from a population of repair- 

able systems with sibling components. 
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Аннотация 

 

АНАЛИЗ НАДЕЖНОСТИ "РОДСТВЕННЫХ" 

КОМПОНЕНТ 

 

Кривцов В. В., Франкштейн М. Я. 

 

Описывается статистическая процедура, реко- 

мендуемая для использования при анализе надежно- 

сти “родственных” компонентов 

 

Анотація 

 

АНАЛІЗ НАДІЙНОСТІ "СПОРІДНЕНИХ" 

КОМПОНЕНТ 

 

Кривцов В. В., Франкштейн М. Я. 

 
Описується статистична процедура, яка реко- 

мендується для використання при аналізі надійності 

"споріднених" компонентів 

 

Figure 7 - Kaplan-Meier estimate of the empirical CDF’s 

of the inter–arrival times to 1st and 2nd failures for a 

population of repairable systems 
 
 

 

Figure 8 - Empirical distribution of differences between 

the inter–arrival times to 1st and 2nd failures to at t0=40, 
based on n=10,000 bootstrap simulations 
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