УЛУЧШЕНИЕ СВОЙСТВ ЯДЕР ФУНДУКА ТЕРМООБРАБОТКОЙ

Сесикашвили О.Ш., канд. техн. наук, асоц. проф., Берулава И.О., акад. докт., асоц. проф., Гамкрелидзе Е.А., канд. хим. наук, асоц. проф. Государственный университет А. Церетели (Грузия)

В последнее время особенно возрос интерес к фундуку, что обусловлено высокими питательными свойствами его плодов. По содержанию жира он превосходит грецкий орех, миндаль и арахис. Фундук как культурное растение распространен на Черноморском побережье Кавказа, в Турции, Греции, Италии, Испании и других странах.

По содержанию жира и белка фундук разделяют на десертные и технические сорта. Десертные сорта фундука содержат умеренное количество жира и большое количество белка. Для оценки перспективы создания пищевых продуктов из плодов фундука большое значение имеет химический состав ядер фундука.

В ядрах фундука главными запасными веществами являются липиды и белки. В разных сортах содержание липидов изменяется от 60% до 72,5%, белков — от 15,8% до 17,2%, а доля растворенных углеводов — от 11,9% до 20,1%.

Было изучено изменение химического состава ядер фундука при термообработке горячим воздухом.

Под действием тепла в орехах происходят химические изменения. Глубина изменения определяется не только температурой, но и временем воздействия. Была использована печь типа ЭШ-3. Температура термообработки составляла 100-170 °C, время термообработки -8-60 мин. Было установлено, что оптимальная температура термообработки составляет 30 мин, влажность ядер фундука до термообработки -5,2%, а после термообработки -1,84%.

Изменение химического состава было изучено сравнением контрольного образца с опытным образцом, который был термообработан при оптимальной температуре.

Количественное изменение крахмала, общего сахара, белков, липидов, декстринов, клетчатки и зольных элементов при термообработке фундука представлены в таблице 1.

Таблица 1 Изменение химического состава фундука при термообработке горячим воздухом

Показатель	Контрольный образец	Опытный образец		
Крахмаль	0,78	_		
Caxap	3,28	3,97		
Белки	16,70	16,12		
Общие липиды	69,60	67,20		
Свободные липиды	58,74	57,70		
Связанные липиды	10,86	9,41		
Декстрины	_	0,64		
Клетчатка	4,28	3,51		
Зола	2,29	2,24		

Динамика изменения липидов фундука при термообработке горячим воздухом представлены в таблице 2.

Таблица 2 Изменение липидов фундука при термообработке горячим воздухом

Показатель	Контрольный	Опытный	
	образец	образец	
Фосфолипиды	1,05	1,18	
Моноглицериды	1,40	1,19	
Стеарины	0,35	0,11	
Диглицериды	1,60	2,18	
Свободные жировые кислоты	2,12	4,30	
Триглицериды	82,20	76,54	
Эфиры стеринов	11,28	14,60	

При термообработке фундука крахмал полностью разлагается и образуются декстрины, уменьшается количество белков, липидов, клетчатки и зольных элементов, увеличивается количество сахара. При термообработке фундука количество общих липидов уменьшается на 2–3%, свободные липиды – на 1,04%, а связанные липиды – на 1,45%.

Анализ изменения липидов показывает, что при термообработке увеличивается количество фосфолипидов, диглицеридов, свободных жирных кислот и эфиров стеарина, а количество моноглицеридов и триглицеридов уменьшается.

Использование электромагнитного излучения для нагрева и термообработки продуктов основано на явлении поглощения падающего на продукт ИК-излучения и преобразование его энергии в тепло.

С целью термообработки ядер фундука и для выявления оптимальных параметров было использовано ИК-излучение.

При термообработке ИК-лучами ядер фундука для получения однородного теплового поля на всей поверхности продукта были изучены изменение некоторых параметров: количество ИК-излучателей; расстояние между ИК-излучателями; напряжение на ИК-излучателях. Исследования проводили на специальном стенде, который представляет печь ИК-излучателями. Изменяемыми параметрами эксперимента были время и температура. Диапазон изменения температуры — 90–190 °С шагом 20 °С, а диапазон изменения времени — 5–20 мин шагом 5 мин.

Качество термообработанного фундука оценивали визуально и органолептически (цвет, структура, вкус и аромат).

После термообработки:

- цвет должен быть кремовым, несколько желтоватым;
- структура не должна изменяться, а ядро фундука растрескиваться;
 - вкус должен быть резким и приятным.

Оценка качества проводилась по 100-балльной системе. Результаты балльной оценки в таблице 3.

Ядра фундука были обработаны раствором сахара, поваренной соли и растительным маслом, после чего подвергались ИК-термообработке. Оценка качества проводилась по 100-балльной системе. Результаты экспериментов в таблице 4.

Таблица 3 Балльная оценка качества ядер фундука термообработанных горячим воздухом

Температура	Время термообработки, мин				
°C	5	10	15	20	
130	26	37	41	23	
150	22	55	52	87	
170	17	65	80	78	

Таблица 4 Балльная оценка качества ядер фундука с сахаром, солью, растительным маслом, термообработанных ИК лучами

Температура	Время термообработки, мин								
°C		5			10			15	
130	65	23	37	57	37	47	43	67	55
150	80	43	48	63	75	60	23	90	85
170	45	37	32	32	46	23	17	53	17

Термообработанные при оптимальных режимах ядра фундука с сахаром, солью и растительным маслом являются готовыми продуктами для реализации.

В процессе термообработки происходит изменение биохимического комплекса (при этом измеяются микробиологический и физический комплексы). В случае инактивации антипитательных веществ в исследуемом продукте вопрос эффективности определяется возможностью создания в рабочей зоне и, соответственно, в продукте температуры не менее 120 °C и обеспечения достаточного времени пребывания продукта в зоне обработки при указанной температуре.