Please use this identifier to cite or link to this item:
https://repo.btu.kharkov.ua/handle/123456789/59338
Title: | Вплив екологічних факторів на акліматизацію устриці (Crassostrea gigas) у Чорному морі |
Other Titles: | The influence of environmental factors on the acclimatization of the oyster (Crassostrea gigas) in the Black Sea |
Authors: | Смольніков, Дмитро Ніконович |
metadata.dc.contributor.advisor: | Григор’єв, О. Я. |
metadata.dc.contributor.affiliation: | Державний біотехнологічний університет Кафедра біотехнології, молекулярної біології та водних біоресурсів |
Keywords: | акліматизація;зміна клімату;фактори екології;кальцифікація;низький рН;Crassostrea gigas;acclimatization;climate change;environmental factors;calcification;low pH;Crassostrea gigas |
Issue Date: | 2024 |
Publisher: | Харків: ДБТУ |
Citation: | Смольніков Д. Н. Вплив екологічних факторів на акліматизацію устриці (Crassostrea gigas) у Чорному морі: кваліфікаційна робота магістра: спец. 207 Воднi бiоресурси i аквакультура; наук. кер. О. Я. Григор’єв. Харків: ДБТУ, 2024. 72 с. |
Abstract: | Мета кваліфікаційної роботи – проаналізувати екологічні фактори фактори,
що впливають на акліматизацію устриці Crassostrea gigas у озері Тілігул, а також
лиманах Одеської області. Для вирішення мети були поставлені завдання:
1. визначити показники якості води у озері Тілігул, а також лиманах Одеської
області;
2. вивчити вплив основного антропогенного фактора середовища – закислення
ґрунту і води у зв’язку з діяльністю людини – на якість мушлі Crassostrea
gigas та накопичення у ній ізотопів вуглецю;
3. вивчити вплив підвищення температури води на швидкість лінійного росту
устриці Crassostrea gigas. The purpose of the qualification thesis is to analyze the ecological factors affecting the acclimatization of the oyster Crassostrea gigas in Lake Tiligul, as well as estuaries of the Odesa region. To solve the goal, the tasks were set: 1. to determine water quality indicators in Lake Tiligul, as well as estuaries of Odesa region; 2. to study the influence of the main anthropogenic factor of the environment - soil and water acidification due to human activity – on the quality of the Crassostrea gigas shell and the accumulation of carbon isotopes in it; 3. to study the effect of increasing water temperature on the rate of linear growth of the Crassostrea gigas oyster. |
URI: | https://repo.btu.kharkov.ua//handle/123456789/59338 |
metadata.dcterms.references: | 1. Офіційний сайт статистики Європи. – [Електронний ресурс].2. Angell S.L. (2019) The biology and culture of tropical oysters. Journal of Shellfish Research, 26, 304–318. 3. Barton, A., McLaughlin, K. (2015). Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Oceanography, 28 (2), 146–159. 4. Beniash, E., Sokolova, I. M. (2010). Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptive strategies implemented in response.Marine Ecology Progress Series, 419, 95–108. 5. Bourlès Y., Arnaud C., Goulletquer P. (2009). Modelling growth and reproduction of the Pacific oyster Crassostrea gigas: Advances in the oyster-DEB model through application to a coastal pond. Journal of Sea Research, 62 (2–3), 62–71. 6. Brown J. R. (1988). Multivariate analyses of the role of environmental factors in seasonal and site-related growth variation in the Pacific oyster Crassostrea gigas. Marine Ecology – Progress Series, 45 (3). 225–236. 7. Byrne, M., & Fitzer, S. (2019). Ocean acidification at high latitudes: Potential effects on functioning of the antarctic bivalve Laternula elliptica. Conservation Physiology. 29, 135–148. 8. Costil K., Soletchnik P., Mathieu M. (2005). Spatio-temporal variations in biological performances and summer mortality of the Pacific oyster Crassostrea gigas in Normandy (France). Helgoland Marine Research, 59, 286–300. 9. Cummings, V., Metcalf, V. (2011). The impact of environmental acidification on the microstructure and mechanical integrity of marine invertebrate skeletons. PLoS One, 6 (1), 160-69 10. Dekhta V.A., Bugav L.A. (2005). Physiological, biochemical and genetic studies of the ichthyofauna of the Azov-Black Sea Basin. Everest, 105 11. Dickinson, G. H. , Sokolova, I. M. (2012). Ocean acidification: The other CO2 problem. The Journal of Experimental Biology, 215 (1), 29–43. 12. Doney, S. C., Kleypas, J. A. (2009). Interactive effects of salinity and elevated CO2 levels on juvenile eastern oysters, Crassostrea virginica. Annual Review of Marine Science, 1, 169–192. 13. Dove, M., & Sammut, J. (2007). Acid sulfate soil induced acidification of estuarine areas used for the production of Sydney rock oysters, Saccostrea glomerata.Journal of Shellfish Research, 26, 509–518. 14. Dove, M. C., Sammut, J. (2013). Histologic and feeding response of Sydney rock oysters, Saccostrea glomerata, to acid sulfate soil outflows Journal of Water Resource and Protection, 5 (3), 16-42. 15. Duarte, C. M., McCulloch, M. (2013). Vulnerability and adaptation of US shellfisheries to ocean acidification. Estuaries and Coasts, 36 (2), 221–236. 16. Ivanyutin N. S. (2019). Current ecological state of Lake Donuzlav. Water and Ecology, 3 (79), 47–58. 17. Ekstrom, J. A., Portela, R. (2015). Is ocean acidification an open‐ocean syndrome? Understanding anthropogenic impacts on seawater pH. Nature Climate Change, 5 (3), 207–214. 18. FAO. (2016). The State of World Fisheries and Aquaculture 2016. Retrieved from Problematic for protection. 58 р. 19. Fitzer, S. C. , Phoenix, V. R. (2014). Coastal acidification impacts on shell mineral structure of bivalve mollusks. Scientific Reports, 4, 62-78. 20. Fitzer, S. C., Dove, M. , O'Connor, W. (2018). Ocean acidification impacts mussel control on biomineralisation. Ecology and Evolution, 8 (17), 973–984. 21. Fitzer, S. C. , Vittert, L., Cusack, M. (2015). Selectively bred oysters can alter their biomineralization pathways, promoting resilience to environmental acidification. Ecology and Evolution, 5 (21), 875–884. 22. Fitzer S.C., McGill R.R, Torres Gabarda S. (2019). Ocean acidification and temperature increase impact mussel shell shape and thickness: Problematic for protection?Glob Change Biol. 6 (4), 122–130. 23. Fitzer, S. C., Cusack, M. (2015). Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis. Journal of the Royal Society Interface, 12, 201-227. 24. Hall S. (1984). A multiple regression model of oyster growth. Fisheries Research, 2 (3). 167–175. 25. Gagnaire B., Renault T. (2006). Diploid and triploid Pacific oysters, Crassostrea gigas (Thunberg), reared at two heights above sediment in Marennes Oleron Basin, France: Difference in mortality, sexual maturation and hemocyte parameters. Aquaculture. 254 (1–4). 606–616. 26. Gallo-García M.C., Rivera K. (2001). Estudio preliminar sobre el crecimiento y sobrevivencia del ostión del Pacífico Crassostrea gigas (Thunberg, 1875) en Barra de Navidad, Jalisco, México. Universidad y Ciencia, 34 (17). 83–91. 27. Gazeau, F., Middelburg, J. J. (2010). Ocean acidification alters the material properties of Mytilus edulis shells. Biogeosciences, 7 (7), 151–160. 28. Gazeau, F., Ross, P. M. (2013). Impact of elevated CO2 on shellfish calcification. Marine Biology, 160 (8), 207–245. 29. Gazeau, F., Quiblier, C. (2007). Impacts of ocean acidification on marine shelled molluscs. Geophysical Research Letters, 34 (7), L07603 30. Goncalves, P., Ross, P. M. (2017). Calcium regulation in the freshwater mollusc, Limnaea stagnalis (L.) (Gastropoda: Pulmonata). Molecular Ecology, 26, 974–988. 31. Góngora-Gómez A.M., Domínguez-Orozco A.L. (2012). Crecimiento del ostión Crassostrea gigas (Thunberg, 1795) cultivado en el estero La Piedra, Sinaloa, México. Avances en Investigación Agropecuaria. 16 (2). 91–104. 32. Greenaway, P. (1971). Transcriptomic profiling of adaptive responses to ocean acidification. Journal of Experimental Biology, 54, 199–214. 33. Grossman, E. L. (1984). Interactive effects of elevated temperature and CO2 levels on energy metabolism and biomineralization of marine bivalves Crassostrea virginica and Mercenaria mercenaria. Geochimica et Cosmochimica Acta, 48, 505–512. 34. Ivanina, A. V., Beniash, E. (2013). Carbon isotopic fractionation in live benthic foraminifer – Comparison with inorganic precipitate studies. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 166 (1), 101–111. 35. Jiang, T. W. (2017). Reactive trace element enrichment in a highly modified, tidally inundated acid sulfate soil wetland: East Trinity, Australia. Science of the Total Environment, 603–604. 36. Jiang Z., Wang G., Fang J., Mao Y. (2013). Growth and food sources of Pacific oyster Crassostrea gigas integrated culture with sea bass Lateolabrax japonicus in Ailian Bay, China. Aquaculture International. 21 (1). 45–52. 37. Karpevich A. F. (1975). Theory and practice of acclimatization of aquatic organisms. Food Industry, 405-435. 38. Keene, A. F., Sullivan, L. A. (2010). Composition of dissolved organic matter (DOM) from periodically submerged soils in the Three Gorges Reservoir areas as determined by elemental and optical analysis, infrared spectroscopy, pyrolysis‐GC–MS and thermally assisted hydrolysis and methylation. Marine Pollution Bulletin, 60 (4), 620–626. 39. Khrebt T. V., Moni O. B. (1985). The culture of the Black Sea and acclimatization of Pacific oysters in the Black Sea. Biological basis of aquaculture. 9 (2) 180–188. 40. Lee Y.-J., Han E. (2018). Physiological processes and gross energy budget of the submerged longline-cultured Pacific oyster Crassostrea gigas in a temperate bay of Korea. PLoS ONE, 13 (7), 108-117. 41. Liu, Y.‐W., Ries, J. B. (2018). The formation and mineralization of the mollusk shell. Nature Communications, 9 (1), 28-57. 42. Marin, F., Le Roy, N. (2012). A coastal coccolithophore maintains pH homeostasis and switches carbon sources in response to ocean acidification. Frontiers in Bioscience, 4 (3), 199–125. 43. Marin, F., Medakovic, M. (2008). Ocean acidification reduces hardness and stiffness of the Portuguese oyster shell with impaired microstructure: A hierarchical analysis. Current Topics in Developmental Biology, 80, 209–276. 44. Meng, Y., Thiyagarajan, V. (2018). Molluscan shell proteins: Primary structure, origin, and evolution. Biogeosciences, 15, 633–646. 45. Mina M.V., Klevezal G.A. (1976). Animal growth. Body-level analysis. Science, 202 p. 46. Nelder, J. (1972). The changing fate of oyster culture in New South Wales, Australia. Journal of the Royal Statistical Society – Series A, 135 (3), 370–384. 47. Nicol, J. A. (1960). The biology of marine animals. London: Sir Isaac Pitman & Sons Ltd. 48. O'Connor, W. , & Dove, M. C. (2009). Generalized linear models. Journal of Shellfish Research, 28 (4), 803–811. 49. Parker, L. M., O'Connor, W. A. (2011). Adult exposure influences offspring response to ocean acidification in oysters. Marine Biology, 158 (3), 689–697. 50. Parker, L., Wright, J. (2013). Predicting the response of molluscs to the impact of ocean acidification. Biology, 2 (2), 651-672. 51. Parker, L., Pörtner, H. (2012). Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Global Change Biology, 18 (1), 82–92. 52. Parker, L., Ross, P. M. (2017). Optimizing electron backscatter diffraction of carbonate biominerals‐resin type and carbon coating. Marine Pollution Bulletin, 122, 263–271. 53. Perez‐Huerta, A. (2009). Ocean acidification narrows the acute thermal and salinity tolerance of the Sydney rock oyster Saccostrea glomerata. Microscopy and Microanalysis, 15 (3), 197–203. 54. Pauley G. B., Van Der Raay B. (1988). Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Pacific Northwest –Pacific oyster). U.S. Fish and Wildlife Service Biological Report, 82 (11), 286-292. 55. Quayle D.B. (1988). Pacific oyster culture in British Columbia. Canadian Fisheries and Aquatic Environments, 218, 241. 56. Rakov V. A. (1986). Biological substantiation of the acclimatization of the Pacific oyster in the Black Sea. ICLARM Studies and Reviews, (13), 42 p. 57. Rakov V. A. (1987). Biology and cultivation of oysters. Cultivation of Pacific invertebrates and algae. Agriculture Industry Publishing House. 72–84. 58. Raven, J., Liss, P. S., Watson, A. (2005). Ocean acidification due to increasing atmospheric carbon dioxide. 59. Ries, J. B. (2011). Marine calcifiers exhibit mixed responses to CO2‐induced ocean acidification. Geochimica et Cosmochimica Acta, 75, 453–464. 60. Ries, J. B. (2009). A physicochemical framework for interpreting the biological calcification response to CO2‐induced ocean acidification. Geology, 37 (12), 1131–1134. 61. Rohling E. J., & Cooke S. (Eds.). (2003). Stable oxygen and carbon isotopes in foraminifera carbonate shells. New York, NY: Kluwer Academic Publishers. 62. Roleda, M. Y., Hurd, C. L. (2012). Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: Laboratory and field experiments. Journal of Phycology, 48, 840–843. 63. Thomsen, J., Melzner, F. (2013). Before ocean acidification: Calcifier chemistry lessons. Global Change Biology, 19, 117–127. 64. Thomsen, J., & Melzner, F. (2010). Energy metabolism and cellular homeostasis trade‐offs provide the basis for a new type of sensitivity to ocean acidification in a marine polychaete at a high‐CO2 vent: Adenylate and phosphagen energy pools versus carbonic anhydrase. Marine Biology, 157, 267–276. 65. Treviño L., Vélez-Chica J.C., Cruz-Quintana Y. (2020). Suspended culture evaluation of Pacific oyster Crassostrea gigas in a tropical estuary. Aquaculture Research, 51 (5), 2052–2061. 66. Turner, L. M., Calosi, P. (2015). Moderate seawater acidification does not elicit long‐term metabolic depression in the blue mussel Mytilus edulis. The Journal of Experimental Biology, 218 (14), 214–251. 67. Vargas, C. A., Manríquez, P. H. (2017). Species‐specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nature Ecology & Evolution, 1, 84. 68. Villanueva-Fonseca B. P., Domínguez-Orozco A. L., Ponce Palafox J. T. (2017). Growth and economic performance of diploid and triploid Pacific oysters Crassostrea gigas cultivated in three lagoons of the Gulf of California. Latin American Journal of Aquatic Research, 45 (2). 466–480. 69. Vinberg G.G. (2016). Growth rate and metabolic rate in animals. Advances in Modern Biology, 61 (2). 274–293. 70. Wilbur, K. M. (1972). Seawater causes rapid trace metal mobilisation in coastal lowland acid sulfate soils: Implications of sea level rise for water quality.Chemical Zoology VII. 103–145. 71. Wong, V. N. L., Sullivan, L. A., & Slavich, P. G. (2010). Shell formation in mollusks In Florkin M. & Scheer B. T. (Eds.). Geoderma, 160 (2), 252–263. 72. Zaika V.E. (1985). The balance theory of animal growth. Kiev: Naukova dumka, 191 p |
Appears in Collections: | 207 - "Водні біоресурси та аквакультура" (Магістри) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2024_M_207_VB-13m_Smol_nikov.pdf Restricted Access | 1.47 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.