Please use this identifier to cite or link to this item: https://repo.btu.kharkov.ua/handle/123456789/59314
Title: Структура зоопланктону у водоймах Харківщини за останні роки
Other Titles: The structure of zooplankton in reservoirs of Kharkiv Oblast in recent years
Authors: Новіков, Вячеслав Анатолійович
metadata.dc.contributor.advisor: Гноєвий, І. В.
metadata.dc.contributor.affiliation: Державний біотехнологічний університет
Кафедра біотехнології, молекулярної біології та водних біоресурсів
Keywords: біорізноманіття;екологія;іхтіофауна;прісна вода;щільність зоопланктону;biodiversity;ecology;ichthyofauna;fresh water;zooplankton density
Issue Date: 2024
Publisher: Харків: ДБТУ
Citation: Новіков В. А. Структура зоопланктону у водоймах Харківщини за останні роки: кваліфікаційна робота магістра: спец. 207 Воднi бiоресурси i аквакультура; наук. кер. І. В. Гноєвий. Харків: ДБТУ, 2024. 71 с.
Abstract: Мета кваліфікаційної роботи – визначення змін у структурі зоопланктонних угрупувань за 2 роки у водоймах із одноманітним складом іхтіофауни та однаковими значеннями екологічних факторів. Для вирішення мети були поставлені завдання: 1. Визначити параметри якості води у двох ставах Харківської області, розділених дамбою. 2. Визначити видовий склад зоопланктону. 3. Визначити структуру популяції зоопланктону, як показника родючості води, що відображає екологічні умови навколишнього середовища.
The purpose of the qualification thesis is to determine changes in the structure of zooplankton communities over 2 years in reservoirs with a uniform composition of ichthyofauna and the same values of environmental factors. To solve the goal, the tasks were set: 1. Determine water quality parameters in two ponds of the Kharkiv region, separated by a dam. 2. Determine the species composition of zooplankton. 3. Determine the structure of the zooplankton population as an indicator of water fertility, which reflects the ecological conditions of the environment
URI: https://repo.btu.kharkov.ua//handle/123456789/59314
metadata.dcterms.references: 1. Akter S.; Bhouyain A.M.; Nasrin D. (2016). Influence of physico-chemical factors on the zooplankton population of Bostami pond of Chittagong. Bangladesh J. Zool., 44, 73–87. 2. Antony S.; Krishnan K.A. (2020). Environmental influences on zooplankton diversity in the Kavaratti lagoon and offshore, Lakshadweep Archipelago, India. Reg. Stud. Mar. Sci., 37, 1033. 3. Ashjian C.J., Gallager S.M. (2005). Characterization of the zooplankton community, size composition, and distribution in relation to hydrography in the Japan/East Sea. Deep-Sea Res II. 52:1363–1392. 4. Allen B.L., Leung L.K.-P. (2012). Top-predators as biodiversity regulators: contemporary issues affecting knowledge and management of dingoes in Australia.Biodiversity Enrichment in a Diverse World, InTech: 85-132. 5. Azam F., Thingstad F. (1983). The ecological role of water column microbes in the sea. Mar Ecol Prog Ser. 10:257–263. 6. Bashar M.A.; Islam A.S.; Mahmud Y. (2015). Seasonal variation of zooplankton population with reference to water quality of Kaptai Lake, Bangladesh. Bangladesh Res. Publ. J., 11, 127–133. 7. Beaugrand G., (2002). Diversity of calanoid copepods in the North Atlantic and adjacent seas: species associations and biogeography. Mar Ecol Prog Ser. 232:179–195. 8. Bērziņš B., Pejler B. (1989). Rotifer occurrence and trophic degree. Hydrobiologia. 182(2): 171-180. 9. Bieri R. (1991). Systematics of Chaetognatha. The biology of chaetognaths. Oxford University Press, London, pp 122–136. 10. Byun S.K. (1989). Sea surface cold water near the southeastern coast of Korea: wind effect. J Korean Soc Oceanogr. 24(3):121–131. 11. Calbet A., Landry M.R. (2004). Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr. 40:51–57. 12. Caron D.A., Hutchins D.A. (2013). The effects of changing climate on microzooplankton grazing and community structure: drivers, predictions and knowledge gaps. J Plankton Res. 35:235–252. 13. Carpenter S.R., Hodgson J.R. (1985). Cascading trophic interactions and lake productivity. BioScience. 35 (10): 634-639. 14. Chiba S., Saino T. (2003). Variation in mesozooplankton community structure in the Japan/ East Sea (1991–1999) with possible influence of the ENSO scale climatic variability. Prog Oceangr. 57:317–339. 15. Chihara M., Murano M. (1997). An illustrated guide to marine plankton in Japan. Tokai University Press, Tokyo, p 1574. 16. Cho Y.K., Kim K. (1998). Structure of the Korea Strait Bottom Cold water and its seasonal variation in 1991. Cont Shelf Res. 15:763–777. 17. Conde-Porcuna J.M. (1998). Chemical interference by Daphnia on Keratella: a life table experiment. J. Plankton Res. 20(8): 1637-1644. 18. Condon R.H., Duarte C.M. (2012). Questioning the rise of gelatinous zooplankton in the world’s oceans. Bioscience. 62:160–169. 19. Diéguez M.C., Gilbert J.J. (2011). Daphnia–rotifer interactions in Patagonian communities. Hydrobiologia. 662(1): 189-195. 20. Dodson S. (1992). Predicting crustacean zooplankton species richness. Limnol. Oceanogr. 37(4): 848-856. 21. Dodson S.I., Cottingham, K.L. (2000). The relationship in lake communities between primary productivity and species richness. Ecology 81(10): 2662- 2679. 22. Dolganova N.T. (2000). Composition, seasonal and interannual dynamics of plankton in the north-western part of Sea of Japan. Dissertation. 23. Dolganova N.T. (2001). Composition, seasonal and interannual dynamics of plankton in the north-western part of Sea of Japan. Ixvestiya TINRO. 128:810–889. 24. Declerck S., Meester L.D. (2007). Plankton biodiversity along a gradient of productivity and its mediation by macrophytes. Ecology. 88(9): 2199-2210. 25. Dhanasekaran M., Kalpana R. (2017). Physico-chemical characteristics and zooplankton diversity in a perennial lake at Dharmapuri (Tamil Nadu, India). J. Entomol. Zool. Stud., 5, 285–292. 26. Doan Dang P.; Ho Thanh H. (2015). Identification Handbook of Freshwater Zooplankton of the Mekong River and Its Tributaries; Mekong River Commission: Vientiane, Laos. 27. Duffy J.E., Loreau M. (2007). The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol. Lett. 10(6): 522-538. 28. Ejsmont-Karabin J. (1998). Empirical equations for biomas calculation of planktonic rotifers. Pol. Arch. Hydrobiol. 45: 513-522. 29. El-Otify A.M. (2015). Evaluation of the physicochemical and chlorophyll-a conditions of a subtropical aquaculture in lake Nasser area, Egypt. Beni-Suef Univ. J. Basic Appl. Sci., 4, 327–337. 30. Eriksson B.K., Rubach, A. (2009). Declines in predatory fish promote bloom forming macro-algae. Ecol. Appl. 19(8): 1975-1988. 31. Gambhir R.S., Nirola А., Bansal V. (2012). Water pollution: Impact of pollutants and new promising techniques in purification process. J. Hum. Ecol. 37, 103–109. 32. Gilbert J.J. (1988). Suppression of rotifer populations by Daphnia: A review of the evidence, the mechanisms, and the effects on zooplankton community structure.Limnol. Oceanogr. 33(6): 1286-1303. 33. Gilbert J.J. (1989). The effect of Daphnia interference on a natural rotifer and ciliate community: Short term bottle experiments. Limnol. Oceanogr. 34(3): 606-617. 34. Gliwicz M.Z. (2002). On the different nature of top down and bottom up effects in pelagic food webs. Freshwater Biol. 47(12): 2296-2312. 35. Gliwicz M.Z., Siedlar, E. (1980). Food size limitation and algae interfering with food collection in Daphnia. Arch. Hydrobiol. 88(2): 155-177. 36. Hammer Ø., Ryan P.D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron., 4, 9. 37. Herzig A. (1987): The analysis of planktonic rotifer populations: A plea for long-term investigations. In Rotifer Symposium IV (pp.). Hydrobiologia. 147: 163-180. 38. Hirakawa K., Ikeda T. (1992). Seasonal variability in abundance and composition of zooplankton in Toyama Bay, Southern Japan Sea. Bull Japan Sea Natl Fish Res Inst. 42:1–15. 39. Hirakawa K., Kawano M. (1995). Seasonal variability in abundance and com position of zooplankton in the vicinity of the Tsushima Straits, southwestern Japan Sea. Bull Japan Sea Natl Fish Res Inst. 45:25–38. 40. Hirota Y., Hasegawa S. (1999). The zooplankton biomass in the Sea of Japan. Fish Oceanogr. 8(4):274–283. 41. Hodgson J.S. (2005). A trophic cascade synthesis: review of top-down mechanisms regulating lake ecosystems. Bios. 76(3): 137-144. 42. Horppila J., Vinni M. (2000). A metalimnetic oxygen minimum indirectly contributing to the low biomass of cladocerans in Lake Hiidenvesi – a diurnal study on the refuge effect. Hydrobiologia. 436: 81-90. 43. Hyun J.H., Kim D., Shin C.W. (2009). Enhanced phytoplankton and bacterioplankton production coupled to coastal upwelling and an anticyclonic eddy in the UB, East Sea. Aquat Microb Ecol. 54:45–54. 44. Ismail J., Al-Asif A.; Abualreesh M.H. (2021). Zooplankton species composition and diversity in the seagrass habitat of Lawas, Sarawak, Malaysia. Biodivers. Data J., 9, 649. 45. Jeong M.K., Soh H.Y. (2011). Taxonomy and zoogeography of euchaetid copepods (Calanoida, Clausocalanoida) from Korean waters, with notes on their female genital structure. Ocean Sci J. 46:117–132. 46. Jeppesen E., Branco C.W.C. (2007). Restoration of shallow lakes by nutrient control and biomanipulation – the successful strategy varies with lake size and climate. Hydrobiologia. 581: 269-285. 47. Jeppesen E., Landkildehus F. (2000). Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwater Biol. 45(2): 201-218. 48. Johan I.; Aysha A.; Islam M. (2016). Seasonal distribution of zooplankton composition and abundance in a sub-tropical mangrove and salt marsh estuary. Malays. J. Sci., 35, 275–289. 49. Jumars P., Hay M. (1999). Ocean ecology: understanding and vision for research. In: Report of the OEUVRE Workshop. Keystone Resort, Colorado, 1–6 Mar 1998. 50. Kang Y.S. (2008). Seasonal variation in zooplankton related to north Pacific Regime Shift in Korea Sea. J Korean Fish Soc. 41(6):493–504. 51. Karabin A. (1985). Pelagic zooplankton (Rotatoria+ Crustacea) variation in the process of lake eutrophication. 1. Structural and quantitative features. Pol. J. Ecol. 33(4): 567- 616. 52. Kim K., Min D.H. (2001). Warming and structural changes in the East (Japan) Sea: a clue to future changes in global oceans? Geophys Res Lett. 28(17):3293–3296. 53. Khan N.S.; Tisha N.A. (2020). Water quality evaluation by monitoring zooplankton distribution in Wild Ponds, Noakhali, Bangladesh. Nat. Environ. Pollut. Technol., 19, 1767–1770. 54. Kuczyńska-Kippen N. (2009). The spatial segregation of zooplankton communities with reference to land use and macrophytes in shallow Lake Wielkowiejskie (Poland). Int. Rev. Hydrobiol. 94(3): 267-281. 55. Lampert W., Sommer U. (2001). Ecology of inland waters. PWN Warsaw, 2001: p. 415. 56. Lee J.C., Lee S.R. (1998). Variability of current and sea level difference in the west- ern channel of the Korea Strait in winter 1995–96. J Fish Sci Tech. 1:276–282. 57. Lee C.R., Park C., Moon C.H. (2004). Appearance of cold water and distribution of zooplankton off Ulsan-Gampo area, Eastern coastal area of Korea. J Korean Soc Oceanogr. 9(2):51–63. 58. Leibold M.A. (1999). Biodiversity and nutrient enrichment in pond plankton communities. Evol. Ecol. Res. 1(1): 73-95. 59. McCauley E. (1984). The estimation of the abundance and biomass of zooplankton in samples. A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. Blackwell Scientific Publication, London: 228–265. 60. McGrady-Steed J., Morin P.J. (1997). Biodiversity regulates ecosystem predictability. Nature. 390: 162-165. 61. Michael R.G. (1969). Seasonal trends in physicochemical factors and plankton of a freshwater fishpond and their role in fish culture. Hydrobiologia. 33(1): 144-160. 62. Mieczan T., Nawrot D. (2016). Effect of water chemistry on zooplanktonic and microbial communities across freshwater ecotones in different macrophyte dominated shallow lakes. Journal of Limnology. 2:262-274. 63. Morioka Y. (1985). Zooplankton biomass in the Japan Sea with reference to the southwestern region. Bull Japan Soc Fish Oceanogr. 47(48):63–66. 64. Naik S.; Panda C. (2013). Spatio-temporal study of zooplankton community in Mahanadi Estuary, Bay of Bengal. Int. J. Ecosyst., 3, 185–195. 65. Nandy T., Mandal S. (2020). Unravelling the spatio-temporal variation of zooplankton community from the river Matla in the sundarbans estuarine system, India. Oceanologia, 62, 326–346. 66. Nemoto T. (1962). Food of baleen whales collected in recent Japanese Antarctic whaling expeditions. Scient Rep Whales Res Inst. 16:89–103. 67. Park C., Lee C.R., Kim J.C. (1998). Zooplankton community in the front zone of the East Sea of Korea (the Sea of Japan): 2 relationship between abundance distribution and seawater tem- perature. J Korean Fish Soc. 31(5):749–759. 68. Park G.H., Lee K. (2006). Large accumulation of anthropogenic CO2 in the East (Japan) Sea andits significant impact on carbonate chemistry. Glob Biogeochem Cycles. 20:GB4013. 69. Paturej E.; Bowszys M. (2017). Effect of physicochemical parameters on zooplankton in the brackish, coastal Vistula Lagoon. Oceanologia, 59, 49–56. 70. Papa R.S.; Zafaralla M.T. (2011). Spatio-temporal variation of the zooplankton community in a tropical caldera lake with intensive aquaculture. Hydrobiologia, 664, 119–133. 71. Pielou, E.C. (1966). The measurement of diversity in different types of biological collections. J. Theor. Biol., 13, 131–144. 72. Pomeroy L.R. (1974). The ocean’s food web, a changing paradigm. Bioscience 24:499–504. 73. Ponomareva L.A. (2003). Euphausiids of the North Pacific, their distribution and ecology. Israel. Program for Scientific Translations, Israel. 74. Purcell J.E. (2009). Extension of methods for jellyfish andctenophore trophic ecology to largescale research. Hydrobiologia. 616:23–50. 75. Rho T., Kim Y., Park J.I. (2010) Plankton community response to physico chemical forcing in the Ulleung Basin, East Sea during summer 2008. Ocean Polar Res.32(3):269–289. 76. Romare P., Hansson L.A. (2003). A behavioral cascade: top-predator induced behavioral shifts in planktivorous fish and zooplankton. Limnol. Oceanogr. 48(5): 1956-1964. 77. Ruttner-Kolisko A. (2007). Suggestion for biomass calculation of plankton rotifers. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8: 71-76. 78. Saiz E., Calbet A. (2011). Copepod feeding in the ocean: scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations. Hydrobiologia. 666:181–196. 79. Sarker M.M., Mustafa Kamal A.H. (2021). Unravelling the diversity and assemblage of phytoplankton in homestead ponds of central coastal belt, Bangladesh. Aquac. Res., 52, 167–184. 80. Schriver P.E.R., Sondergaard M. (1995). Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshwater Biol. 33(2): 255-270. 81. Schmoker C., Hernández-LeónS Calbet A. (2013). Microzooplankton grazing in the oceans: impacts, data variability, knowledge gaps and future directions. J Plankton Res. 35(4):691–706. 82. Segers H. (2008): Global diversity of rotifers (Rotifera) in freshwater.Hydrobiologia. 595(1): 49-59. 83. Sharif A.M, Bhuyan M.S. (2017). Spatio-temporal occurrence and distribution of copepod in the Karnaphuli river estuary, Bangladesh. J. Biodivers. Environ. Sci., 10, 271–282. 84. Strecker A.L., Girard R. (2006). Variation in the response of crustacean zooplankton species richness and composition to the invasive predator Bythotrephes longimanus. Can. J. Fish. Aquat. Sci. 63(9): 2126-2136. 85. Sousa W., Eskinazi-Sant'Anna E.M. (2008). The response of zooplankton assemblages to variations in the water quality of four man-made lakes in semi-arid northeastern Brazil. J. Plankton Res. 30(6): 699-708. 86. Suh H.L., Lim J.W., Soh H.Y. (1998). Population structure of surface swams of the euphausiid Euphausia pacifica caught by drum screens of Uljin Nuclear Power Plant in the east coast of Korea. J Korean Soc Oceanogr. 33:35–40. 87. Sun D.; Wang C. (2016). Scale-dependent environmental control of mesozooplankton community structure in three aquaculture subtropical bays of China. Oceanologia, 58, 124–134. 88. Tsoumani M., Leonardos I. (2006). Length weight relationships of an invasive cyprinid fish (Carassius gibelio) from 12 Greek lakes in relation to their trophic states. J. Appl. Ichthyol. 22(4): 281-284. 89. Tulsankar S.S., Fotedar R. (2021). Temporal variations and pond age effect on plankton communities in semi-intensive freshwater marron (Cherax cainii, Austin and Ryan, 2002) earthen aquaculture ponds in Western Australia. Saudi J. Biol. Sci., 28, 1392–1400. 90. Vermeer K., Devito K. (1988). The importance of Paracallisoma coecus and myctophid fishes to nesting folk-tailed and Leach’s storm-petrels in the Queen Charlotte Islands, British Columbia. J Plankton Res. 10:63–75. 91. Vinogradov M.E., Sazhin A.F. (1978). Vertical distribution of the major groups of zooplankton in the northern part of the Sea of Japan. Oceanology. 18:205–209. 92. Welker M.T., Wahl D.H. (1994). Growth and survival of larval fishes: roles of competition and zooplankton abundance. T. Am. Fish. Soc. 123(5): 703-717. 93. Wi J.H., Böttger-Schnack R., Soh H.Y. (2010). Species of Triconia of the conifera-subgroup (Copepoda, Cyclopoida, Oncaeidae) from Korean waters, including new species. J Crustacean Biol. 30:673–691. 94. Wiebe P.H., Hurt K.H., Boyd S.H. (1976). A multiple opening/closing net and environmental sensing system for sampling zooplankton. J Mar Res. 34:313–326. 95. Witty L.M. (2004). Practical guide to identifying freshwater crustacean zooplankton. In Cooperative Freshwater Ecology Unit; Laurentian University: Sudbury, ON, Canada. 96. Yan N.D., Boudreau S. (2002). An introduced invertebrate predator (Bythotrephes) reduces zooplankton species richness. Ecol. Lett. 5(4): 481-485. 97. Yang E.J., Kang C.K., Yoo S. (2009) Contribution of auto- and heterotrophic protozoa to the diet of copepods in the Ulleung Basin, East Sea/Japan Sea. J Plankton Res. 31(6):647–659. 98. Yang Y., Yang Z.F. (2012). Integration of water quantity and quality in environmental flow assessment in wetlands. Procedia Environmental Sciences. 13: 1535- 1552. 99. Zhao K.; Tian H. (2018). Factors determining zooplankton assemblage difference among a man-made lake, connecting canals, and the water-origin river. Ecol. Indic. 84, 488–496. 100.Żurek R. (1982). Effect of suspended materials on zooplankton. 2. Laboratory investigations of Daphnia hyalina Leydig. Acta Hydrobiol. 24: 233-251
Appears in Collections:207 - "Водні біоресурси та аквакультура" (Магістри)

Files in This Item:
File Description SizeFormat 
2024_M_207_VB_13m_Novikov.pdf
  Restricted Access
1.1 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.