Please use this identifier to cite or link to this item:
https://repo.btu.kharkov.ua/handle/123456789/59312
Title: | Природне відтворення рибних ресурсів на Харківщині |
Other Titles: | Natural reproduction of fish resources in Kharkiv region |
Authors: | Кулик, Євгеній Юрійович |
metadata.dc.contributor.advisor: | Гноєвий, І. В. |
metadata.dc.contributor.affiliation: | Державний біотехнологічний університет Кафедра біотехнології, молекулярної біології та водних біоресурсів |
Keywords: | антропогенний тиск;відтвореня риб у водоймах;технологічна карта зариблення водойм;якість посадкового матеріалу;anthropogenic pressure;reproduction of fish in reservoirs;technological map of reservoir stocking;quality of planting material |
Issue Date: | 2024 |
Publisher: | Харків: ДБТУ |
Citation: | Кулик Є. Ю. Природне відтворення рибних ресурсів на Харківщині: кваліфікаційна робота магістра: спец. 207 Воднi бiоресурси i аквакультура; наук. кер. І. В. Гноєвий. Харків: ДБТУ, 2024. 77 с. |
Abstract: | Мета кваліфікаційної роботи – проаналізувати фактори, що впливають на
ефективність природного відтворення рибних ресурсів у водоймах Харківської
області. Розробити технологічні карти зариблення водойм найбільш ціними
видами риб. Для вирішення мети були поставлені завдання:
1. Проаналізувати сучасні методи розведення цінних видів риб.
2. Розробити методику розрахунку зариблення.
3. Розробити технологічні карти зариблення водойм Харківської області
пріоритетними і перспективними видами риб.
4. Визначити цілі зариблення водойм The purpose of the qualification thesis is to analyze the factors affecting the effectiveness of natural reproduction of fish resources in water bodies of the Kharkiv region. To develop technological maps of reservoir stocking with the most valuable species of fish. To solve the goal, the following tasks were set: 1. To analyze modern methods of breeding valuable species of fish. 2. Develop a methodology for calculating stocking. 3. To develop technological maps of stocking reservoirs of the Kharkiv region with priority and promising fish species. 4. Determine the goals of stocking water bodies. |
URI: | https://repo.btu.kharkov.ua//handle/123456789/59312 |
metadata.dcterms.references: | 1. Adite, A. (2006). Population structure and reproduction of the African bonytogue Heterotis niloticus in the So River-floodplain system (West Africa): implication for management. Ecology of Freshwater Fishes, 15: 30-39. 2. Ali, A.B. (1996). The reproductive biology of the cyprinid, Thynnichthys thynnoides (Bleeker), in the Chenderoh Reservoir – a small tropical reservoir in Malaysia. Hydrobiologia, 318: 139-151. 3. Ali, A.B. (1999). Aspect of the reproductive biology of female snakehead (Channa striata Bloch) obtained from irrigated rice agro-ecosystem, Malaysia. Hydrobiologia, 00: 1-7. 4. Alonso-Fernandez, Saborido-Rey, F. (2008). Spawning pattern and reproductive strategy of female pouting Trisopterus luscus (Gididae) on the Galician Shelf of North-Western Spain. Aquatic Living Resources, 21: 383-393. 5. Asoh, K. (2002). Gonadal development and mode of sexuality in a coral-reef damselfish, Dascyllus trimaculatus. Journal of Zoological London, 256: 301-309. 6. Avise, J.C. (2009). Evolutionary perspectives on hermaphroditism in fishes. Sexual Development, 3:152–163. 7. Bagenal, T.B. (1978). Aspects of fish fecundity. In: Gerking, S.D (ed.). Ecology of freshwater fish production. Blackwell Scientific Publications, Oxford. 8. Balon, E.K. (1984). Patterns in the evolution of reproductive styles in fishes. In: Fish reproduction: Strategies and tactics. Potts, G.W and Wootton, R.J. (eds.). Academic Press, New York. 9. Barbin, G.P (1997). Fecundity of the American eel Anguilla rostrata at 45o N in Maine, U.S.A. Journal of Fish Biology, 51:840-847. 10. Bone, Q., Marshall, N.B. 1996. Biology of fishes (second edition). Chapman and Hall, London. 11. Brewer, S.K. (2008). Comparing histology and gonadosomatic index for determining spawning condition of small-bodied riverine fishes. Ecology of Freshwater Fish, 17: 54–58. 12. Britz, R. (1998). On the reproduction and early development of Erpetoichthys calabaricus, Polyterus senegalus, and Polypterus ornatipinnis (Actinopterygii: Polypteridae). Ichthylogical Exploration of Freshwaters, 9(4): 325-334 13. Breining, T. (2000). Egg surface structure of three clingfish species, using scanning electron microscopy. Journal of Fish Biology, 56: 1129-1137. 14. Bromage, N., Jones, J., (1990). Fecundity, eggs size, and total egg volume differences in 12 stocks of rainbow trout. Aquaculture Fishery Management, 21: 269-284. 15.Brooks, E.N., 2013. Effects of variable reproductive potential on reference points for fisheries management. Fish. Res. 138, 152–158. 16. Brown-Peterson, N.J. (2001). The reproductive biology of Spotted seatrout,Cynoscion nebulosus along the Missisippi Gulf Coast. Gulf of Mexico Sciences, 1: 61-73. 17. Buckley, L.J. (1991). Winter flouder, Pseudopleuronectes americanus reproductive success.II. Effect of spawning time and female size on size, composition and viability of egg and larvae. Marine Ecology Progress Series, 74, 125-135. 18. Carrillo, M., Navas, J.M. (2000). Some criteria of the quality of the progeny as indicators of physiological broodstock fitness. Cahiers Options Mediterraneennes: Recent advances in Mediterranean Aquaculture. Finfish Species Diversification, 47:61-73. 19. Cervin˜o, S., Pin˜eiro, C., Saborido-Rey, F., 2013. Impact of egg production and stock structure on MSY reference points and its management implications for southern hake (Merluccius merluccius). Fish. Res. 138, 168–178. 20. Coker, T., Tosunoglu Z. (2008). Determination of batch fecundity in Uranoscopus scaber Linnaeus, 1758 from the Aegean Sea, Turkey. Journal of Applied Ichthyology, 24: 85-87. 21. Cooper, W.T., Lowerre-Barbieri, S.K., 2013. Assessing stock reproductive potential in species with indeterminate fecundity: effects of age truncation and size dependent reproductive timing. Fish. Res. 138, 31–41. 22. Coward, K. (2000). Reproductive physiology of female tilapia broodstock.Reviews in Fish Biology and Fisheries, 10:1-25. 23. Ehrlich, M., Macchi, G., Madirolas, A., Machinandiarena, L., 2013. Vertical distribution of hake Merluccius hubbsi in spawning aggregations in North Patagonian waters of the Southwest Atlantic. Fish. Res. 138, 89–98. 24. Ezenwaji, H.M.G. (1998). The breeding biology of Clarias albopunctatus Nichols & LaMonte, 1953 in semi-intensively managed pond in the floodplain of the River Anambra, Nigeria. Ecology of Freshwater Fish, 7: 101-107. 25. Ganias, K., 2013. Determining the indeterminate: evolving concepts and methods on the assessment of the fecundity pattern of fishes. Fish. Res. 138, 23–33. 26. Ginzburg, A.S. (1972). Fertilization in fishes and the problem of polyspermy. T.A. Detlaf (ed.). Israel Program for Scientific Translations, Jerusalem. 27. Gonc, P., Henriques, E., Angélico, M.M., 2013. Co-occurrence of Trachurus trachurus and Trachurus picturatus spawners in Atlantic Iberian waters and the ability to distinguish their eggs in plankton samples. Fish. Res. 138, 139–145. 28. Grandcourt, E.M., Al-Shamsi, A.T. (2009). Reproductive biology and implications for management of the orange-spotted grouper Epinephelus coioides in the southern Arabian Gulf. Journal of Fish Biology, 74: 820-841. 29. Greer-Walker, M. (1994). Is the fecundity of the Atlantic mackerel (Scomber scombrus) determinate?. Sarsia, 79: 13-26. 30. Haslob, H., Saborido-Rey, F., 2013. Seasonal variability of fecundity and spawning dynamics of Baltic sprat. Fish. Res. 138, 99–109. 31. Hilborn, R., Stokes, K., Maguire, J., Smith, T., Botsford, L.W.L., 2004. When can marine reserves improve fisheries management? Ocean Coast. Manage. 47, 197–205. 32. Hunter, J.R. (1980). Spawning incidence and batch fecundity in northern anchovy, Engraulis mordax. Fisheries Bulletin U.S., 77: 641-652. 33. Hunter, J.R., Kimbrell, C.A. (1992). Fecundity, spawning, and maturity of female Dover sole, Microstomus pacificus, with an evaluation of assumptions and precision. Fisheries Bulletin U.S., 90: 101-128. 34. Jonsson, N. (1996). Does early growth cause a phenotypically plastic response in egg production of Atlantic salmon. Functional Ecology, 10:89-96. 35. Jonsson, N. (1997). Energy allocation in polymorphic brown trout. Functional Ecology, 11:310-317. 36. Jonsson, N. (1999). Trade-off between egg mass and egg number in brown trout. Journal of Fish Biology, 55: 767-783. 37. Kapoor, B.G. (2004). Ichthyology handbook. Springer-Verlag, Berlin. 38. Koslow, J.A., 1992. Fecundity and the stock–recruitment relationship. Can. J. Fish. Aquat. Sci. 49, 210–217. 39. Kraus, G., Trella, K. (2000). Fecundity of Baltic cod: temporal and spatial variation. Journal of Fish Biology, 56:1327-1341. 40. Kume, G., Aoki, I. (2000). Reproductive biology of the cardinalfish Apogon lineatus in Tokyo Bay, Japan. Fisheries Science, 66: 947-954. 41. Lambert, Y., 2013. Long-term changes in life history characteristics and reproductive potential of northern Gulf of St. Lawrence cod (Gadus morhua) and consequences for the stock productivity. Fish. Res. 138, 5–13. 42. Li, Y.H. (2000). Comparative ultrastructure studies of the zona radiata of marine fish eggs in three genera in perciformes. Fish Biology, 56: 615-621. 43. Lowerre-Barbieri, S.K., Murua, H., 2011. Reproductive timing in marine fishes: variability, temporal scales, and methods. Mar. Coast. Fish. Dyn. Manage. Ecosyst. Sci. 3, 71–91. 44. Marcano, D., Poleo, G., Gago, N. (2007). Seasonal reproductive biology of two species of freshwater catfish from the Venezuelan Floodplains. General and Comparative Endocrinology, 153:371-377. 45. Marshall, C.T., 2009. Implementing information on stock reproductive potential in fisheries management: the motivation, challenges and opportunities. Fish Reproductive Biology. Wiley-Blackwell, Oxford, UK, pp. 395–420. 46. Marteinsdottir, G., Begg, G., 2002. Essential relationships incorporating the influence of age, size and condition on variables required for estimation of reproductive potential in Atlantic cod Gadus morhua stocks. Mar. Ecol. Prog. Ser. 235, 235–256. 47. Matthews, W.J. (1998). Patterns in freshwater fish ecology. Chapman and Hall, USA. 48. Mehault, S., Saborido-Rey, F., 2010. Variability in total egg production and implications for management of the southern stock of European hake. Fish. Res. 104, 111–122. 49. Morgan, M.J., 2008. Integrating reproductive biology into scientific advice for fish- eries management. J. Northwest Atlantic Fish. Sci. 41, 37–51. 50. Morgan, M.J., Saborido-Rey, F., 2011. Does increased informa- tion about reproductive potential result in better prediction of recruitment? Can. J. Fish. Aquat. Sci. 68, 1361–1368. 51. Moyle, P.B. (1992). Loss of biodiversity in aquatic ecosystem: evidence from fish fauna. In: Fiedle, P.L and Jain, S.K. (eds). Conservation biology; the theory and practice of nature conservation, preservation and management. Chapman and Hall, New York. 52. Muchlisin, Z.A. (2004). Preliminary study on the sperm cryopreservation of bagrid catfish (Mystus nemurus) and evaluation of dietary protein level on the gonadal development of female brood stock. M.Sc Thesis University Sains Malaysia, Penang. 53. Muchlisin, Z.A. (2005). Factor affect gonadal development of female broodfish : A review. Biologi, 4(6): 411-427. 54. Muchlisin, Z.A., Hashim, R. (2006). Short communication: Influences of dietary protein levels on several reproductive parameters in bagrid catfish Mystus nemurus female broodstock. Aquaculture Research, 37: 416-418. 55. Muchlisin, Z.A., (2010). Spawning seasons of Rasbora tawarensis in Lake Laut Tawar, Aceh Province, Indonesia. Reproductive Biology and Endocrinology, 8: 49. 56. Muchlisin, Z.A., Fadli, N. (2011). Fecundity and spawning frequency of Rasbora tawarensis (Pisces: Cyprinidae) an endemic species from Lake Laut Tawar, Aceh, Indonesia. AACL Bioflux, 4(3): 273-279. 57. Muchlisin, Z.A. (2013). Study on potency of freshwater fishes in Aceh waters as a basis for aquaculture and conservation development programs. Jurnal Iktiologi Indonesia, 13(1): 91-96. 58. Mun˜oz, M., Vila, S., 2013. Effects of artisanal fisheries on the scorpaenids (Scorpaena spp.) reproduction in the marine protected area of Cap de Creus (NW Mediterranean). Fish. Res. 138, 146–151. 59. Murawski, S.A., Trippel, E.A., 2001. Impacts of demographic variation in spawning characteristics on reference points for fishery management. ICES J. Mar. Sci. 58, 1002–1014. 60. Murua, H., Thorsen, A. (2003). Procedure to estimate fecundity of marine fish species in relation to their reproductive strategy. Journal of Northwest Atlantic Fisheries Sciences, 33: 33-54. 61. Murua, H. (2003). Female reproductive strategies of marine fish species of the north Atlantic. Journal of Northwest Atlantic Fisheries Society, 33: 23-31. 62. Nasution, S.H. (2005). Karekteristik reproduksi ikan endemic rainbow selebensis (Telmatherina celebensis Boulenger) di Danau Towuti. Jurnal Penelitian Perikanan Indonesia, 3(2): 13-18. 63. Ndjaula, H., Kjesbu, O., 2010. Long-term changes in the total egg production of Norwegian spring-spawning herring Clupea harengus (L.) – implications of variations in population structure and condition factor. Fish. Res. 104, 19–26. 64. Nichol, D.G. (2001). Annual and batch fecundities of yellowfin sole, Limanda aspera, in the eastern Bering Sea. Fisheries Bulletin, 99: 108-122. 65. Normando, F.T., Thome, R.G. (2009). Reproduction and fecundity of tucunare, Cichla kelberi (Perciformes: Cichlidae), an exotic species in Tre s Marias Reservoir, Southeastern Brazil. Journal of Applied Ichthyology, 25: 299-305. 66. Pérez-Rodríguez, A., Saborido-Rey, F., 2013. Disen- tangling genetic change from phenotypic response in reproductive parameters of Flemish Cap cod Gadus morhua. Fish. Res. 138, 62–70. 67. Pérez-Rodríguez, A., Domínguez-Petit, R., Saborido-Rey, F., 2011. Study of the relationship between total egg production, female spawn- ing stock biomass and recruitment in Flemish Cap cod (Gadus morhua). Cienc. Mar. 37 (4B), 675–687. 68. Piet, G.J., Radu G., 2010. Marine Strategy Framework Directive, Task Group 3 Report: Commercially exploited fish and shellfish. Luxembourg: Office for Official Publications of the European Communities, 81 pp. 69. Rainboth, W.J. (1991). Cyprinids of Southeast Asia. In: I.J. Winfiled and J.S. Nelson (eds.) Cyprinids fishes, systematics, biology and exploitation. Chapman and Hall, London. 70. Redding, J.M. (1993). Reproductive Physiology, In the Physiology of Fishes. (Ed. D.H. Evan). CRC Marine Science Series Press, Florida, USA. 71. Rijnsdorp, A.D., van Damme, C.J.G., Witthames, P.R., 2010. Implications of fisheries induced changes in stock structure and reproductive potential for stock recovery of a sex-dimorphic species, North Sea plaice. ICES J. Mar. Sci. 67, 1931–1938. 72. Roff, D.A. (1992). The evolution of live histories: Theory and analysis. Chapman and Hall, New York. 73. Schlosser, I.J. (1990). Environmental variation, life-history attributes, and community structure in stream fishes: implications for environmental management and assessment. Environmental Management, 15: 621–628. 74. Scott, B., Marteinsdottir, G., 1999. Potential effects of maternal factors on spawning stock–recruitment relationships under varying fishing pressure. Can. J. Fish. Aquat. Sci. 56, 1882–1890. 75. Singh, A.K. (2007). Biological and reproductive diversity in reverie as well as lacustrine golden mahser, Tor putitora (Hamilton 1822) in central Malayas, India. In: Mahser, the biology, culture and conservation. Proceeding of the International Symposium on the Mahseer. 29-30 March, 2006. Kuala Lumpur, Malaysia. Malaysian Fisheries Society, Malaysia. 76. Skjæraasen, J.E., Nash, R.D.M., 2013. Sizeenergy and stage-dependent fecundity and the occurrence of atresia in the Northeast Arctic haddock Melanogrammus aeglefinus. Fish. Res. 138, 120–127. 77. Solomon, F.N. (2007). Reproductive biology of white mullet, Mugil curema (Valenciennes) in the Southern Caribbean. Fisheries Research, 88: 133-138. 78. Spencer, P.D., Dorn, M.W., 2013. Incorporation of weight-specific relative fecundity and maternal effects in larval survival into stock assessments. Fish. Res. 138, 159–167. 79. Tomkiewicz, J., Saborido-Rey, F., 2003. Available information for estimating reproductive potential of Northwest Atlantic groundfish stocks. J. Northwest Atlantic Fish. Sci. 33, 1–21. 80. Van-Eenennaam, J.P., Moberg, G.P., (1996). Reproductive conditions of the Atlantic sturgeon (Acipenser oxyrinchus) in the Hudson River. Estuaries, 19 (4): 769-777. 81. West, G. (1990). Methods of assessing ovarian development in fishes: A review. Australian Journal Marine and Freshwater Research, 41: 199-222. 82. Witthames, P.R., Kjesbu, O.S., 2013. Contrasting development and delivery of realised fecundity in Atlantic cod (Gadus morhua) stocks from cold and warm waters. Fish. Res. 138, 128–138. 83. Witthames, P.R., Korta, M., 2009. Advances in methods for determining fecundity: application of the new methods to some marine fishes. Fish. Bull. 107, 148–164. 84. Wright, P., 2013. Methodological challenges to examining the causes of variation in stock reproductive potential. Fish. Res. 138, 14–22. 85. Wuenschel, M., McBride, R.S., Fitzhugh, G.R., 2013. Relations between total gonad energy and physiological measures of condition in the period leading up to spawning: Results of a laboratory experiment on black sea bass (Centropristis striata). Fish. Res. 138, 110–119 |
Appears in Collections: | 207 - "Водні біоресурси та аквакультура" (Магістри) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2024_M_207_VB_13m_Kulyk.pdf Restricted Access | 1.36 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.