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Abstract – Various replacement policies under Kijima’s general repair model with the underlying Weibull distribu-

tion function are studied via two efficient methods. The first one is based on our previously derived approximate for-  
mula for the g renewal function; the second is an improved Monte Carlo method. These methods enable an in–depth, 

comparative analysis of the maintenance polices in question. An efficient algorithm is suggested for finding optimal 

preventive replacement times. The influence of restoration factor, including the deviation from a minimal repair as-

sumption, on the optimal solution is studied. A practical study illustration is provided.  
Index Terms – G renewal process, optimal maintenance, Weibull distribution, Monte Carlo method. 

 

NOTATION 
 

V n, Sn – virtual, real age of the system after repair 

n q – restoration (or repair effectiveness) factor  
t – time  
W(t) – g renewal function denoting the expected cu-

mulative number of failures 

f(t) – probability density function  
F(t) – cumulative distribution function 

λ, α – respectively, the scale, and the shape parame-

ters of Weibull distribution  
Г(x) – Gamma function 

μ, σ – the mean, and the standard deviation of the 

failure time distribution  
N – number of simulations  
a, b, c, , A, B, H, D – numerical constants 

C0 – replacement cost 

C1 – minimal repair cost 

C q – corrective repair cost depending on restoration 
factor 

CT  – expected total cost per unit time  
T – expected length of replacement cycle 

 
INTRODUCTION 
 

Even though maintenance optimization is of great 

practical importance, the vast majority of papers [1], [2], 

[3], [4], [7] were devoted only to two special cases of the 

repair model: 1) minimal repair, when a system is 

"same−as−old" following the repair, and 2) perfect repair, 

when the system is "good−as−new" after restoration. The 

generalized renewal process (GRP) was introduced in 

[11], [12], [13], and then developed in [5], [6]. In [12], 

[13] it was applied to the maintenance optimization prob-

lem with special underlying distribution functions includ-

ing the Gamma function, and some combination of expo-

nential functions, because they imply an easy way to ob-

tain the solution. The most popular Weibull distribution 

function is considered in a few papers [5], [6]. We did not 

find, however, a comprehensive, systematic analysis of 

maintenance policies under the GRP model with the un-

derlying Weibull distribution function. We believe that 

the main reason is the complexity of the problem: it is 

required to solve complex g−renewal equations many 

 
times to obtain an optimal solution in a general case. We 

suggest two efficient methods for solving this problem, 

and provide detailed analysis of maintenance solutions 

with respect to different GRP parameters and mainte-

nance policies. 

The objective of this research was trifold: 1) to dem-

onstrate the efficiency of the Approximate and Improved 

Monte Carlo methods in solving the g–renewal equations 

with application to optimal maintenance problems; 2) to 

study the sensitivity of the g–renewal model (in particu-

lar, the sensitivity of the minimal and perfect repair as-

sumptions) to the value of the restoration factor in main-

tenance optimization; and 3) to comparatively analyze 

optimization policies under the probabilistic framework of 

the g–renewal process with an underlying Weibull distri-

bution function. 
A. Maintenance policies description and assumptions.  
We consider a system deteriorating with age in the 

infinite time horizon. It can be repaired according to the 

GRP model with cost Cq , or replaced by a new one with 

cost C0 . Both types of maintenance can be corrective (at  
the failure time), or preventive (at a scheduled time), cre-

ating four possible combinations.  
To prevent the entire degradation of the system in the 

infinite time horizon, we have to introduce periodic re-

placement in the maintenance process to set the age of the 

system to 0 at the end of each cycle. The optimization 

criterion is the expected average total cost per unit time 

 
  cycle   

CT E cos t of 
 (1) 

  

 length of cycle  
The total cost CT can be minimized by scheduling 

preventive maintenance and selecting different mainte-

nance policies, described for example in [1]. Following 

[2], [3], we consider 3 types of polices, which were intro-

duced first for the case of minimal repair.  
Policy 1 : Perform repairs up to age T , and replace 

at age T [2].  
In this case, the length of a cycle is constant, and the 

expected total cost per unit time can be defined as [3] 
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According to this policy, replacements are preformed TdQ t dt , (5) 

periodically, and it is sufficient to define the renewal pro- 0  
  

cess in the time interval 0  t  T . The objective is to 

where Q t  is the unavailability of the system at cur- 
find an optimal value T  T 

*
 , which minimizes (2). 

rent time point t. If the expected time to repair   is much 
Policy 2: Perform repairs for the first n  1  failures, 

less than the time to failure, Q t   w(t ) [12], where and replace at the n  th  failure.  
  

w(t )  d W (t ) / dt . Finally, the total down time can be   

C0   Cq (n  1) 

   
C

T  , (3) represented as Td   W T   . Therefore, the correspond- 
 

   
T

n  ing cost is proportional to W T  , and can be included in  

where Tn E length of cycle . The total cost is mini- 
 
mized with respect to  n  in this model. This policy is  
more flexible compared to the previous one, and it yields 

a lower average total maintenance cost, which is proven 

in [7] for the minimal repair model. A simple formula and 

numerical examples are also provided in this case for the 

underlying Weibull failure time distribution. The policy is 

not studied in a more general case.  

Policy 3: Perform repairs up to age T3
*
 , and replace  

at the first failure after T3
*
 [5]. 

It is shown in [5] that this policy is optimal under a 

minimal repair model for the given values C0 and C1 .  
This result is expanded for the case of the g−renewal pro-

cess in [4].  
In the general case of this policy, (1) should be used. 

In [11], the authors implicitly assumed that the cost of a 

cycle and the length of a cycle are s−independent, and 

therefore the following equation is considered 
 

C E cos t of cycle . (4) 
  

T 
E length of cycle 

 
  

 
We will show the limitations of this formula using 

the Monte Carlo method.  
Policy 2 is more cost efficient than Policy 1, and Pol-

icy 3 is optimal given that both types of cost Cq and C0  
are fixed. In practice, however, the replacement in Policy 

1 may be less expensive because it is planned at a given 

time T , and the unexpected down time can be signifi-

cantly reduced. We will study this case, and find the limi-

tations when Policies 2 and 3 are actually more efficient 

compared to the first one. 

Obviously, the difference between these three poli-

cies depends on all GRP parameters (that is, parameters of 

the underlying distribution, and the restoration parame-

ter). We did not find any systematic comparative studies 

of maintenance policies considering the case of the GRP 

with a Weibull underlying distribution. This analysis will 

be provided in Section III of the paper. 

The average cost of repair Cq  (as well as the cost of 

replacement  C0 ) includes not only the costs of repair 

itself but also all costs resulting from the failure (e. g., the 

cost of down time, possible lost sales, idle labour, delays 

in logically dependent processes). For example, the ex- 

(2). 

Solving the generalized renewal process equations, 

and in particular finding the g−renewal function W t , is 
 
the core problem of maintenance optimization. 

 
B. Generalized renewal process.  
As discussed in [9] and [13], in repairable system re-

liability analysis, one could consider four different states 

to which a system can be repaired following a failure: 1) 

"good−as−new," 2) "same−as−old," 3) "bet–ter−than−old 

−but−worse−than−new," and 4) "worse−than−old." All of 

these states are usually modeled by a stochastic point 

processes. A general assumption, which is made when 

using a stochastic point process to model a repairable sys-

tem's failure occurrence, is that the time of the system's 

repair is negligibly small compared to its time to failure. 

This assumption is quite realistic in many applications; 

for example, consider 18 months to an automobile failure 

vs. 3 days (0.1 months) to its repair.  
Upon a failure, if a repairable system is restored to a 

"good−as−new" condition, and the time between system 

failures can be treated as an i.i.d. random variable, then 

the failure occurrence can be modeled by the Ordinary 

Renewal Process (ORP). If upon a failure the system is 

restored to the "same−as−old" condition, then an appro-

priate model to describe the failure occurrence can be the 

Non−Homogeneous Poisson Process (NHPP). A more 

general model is the so−called Generalized Renewal Pro-

cess (GRP), which treats ORP and NHPP as special cases. 

The GRP or g renewal process, originally introduced 

by Kijima and Sumita [11], [13], has gained increasing 

popularity in modeling and analysis of recurrent events, 

specifically in reliability and maintainability applications. 

The GRP is introduced (Kijima Model 1) using the notion 

of virtual age: 
 

Vn = qSn . (6) 
 

For q = 0, the age of the system after the repair is 

"re−set" to zero; this approach corresponds to the ORP. With 

q = 1, the system is restored to the "same−as−old" condition, 

which is modeled as a NHPP. The case of 0 < q < 1 corre-

sponds to the intermediate "bet-

ter−than−old−but−worse−than−new" repair assump-

tion.Finally, with q > 1, the virtual age is Vn > Sn, so that the 

repair damages (ages) the system to a higher degree than it 

was just before the respective failure, which corresponds to 

the "worse−than−old" repair assumption. As such, all four 
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considered cases of q can be modeled by the GRP.  
Under the GRP, the expected number of events (fail-

ures) in (0, t] is given by a solution of the so−called  
g renewal function [13] 

 
   t       

W (t ) 
     

(7)  g (  | 0)  w(x )g (   x | x )dx  d , 

   0   0    

where          

g (t  x)  f (t  qx) ,  t , x  0, and w(x)  
dW

 
(x) 

;  

1  F (qx) 
 

   dx   
 

Note that g(t|0) = f(t).  
In this paper, we consider the most popular Weibull 

distribution with the cumulative distribution function 

(CDF) expressed by 

 

where Pi, i+1(t) is probability of a transition from state i 

to state i+1 at a given time t under the condition that the 

system is in the i−th state. The simulation procedure is 

illustrated in Fig 1. To define the expected number of failures 

at observation time t in each trial, we calculate the sum of the 

probabilities of the failures at the given time t for each 

subsequent time Si immediately after the 
 
i−th repair.  

The first term of (9) can be written in the simple form 
 

P0,1(t)  F (t) . (10) 

 
It does not depend on the trial number, its variance is 

equal to 0, and therefore the suggested approach is much 

more accurate. 

 

F (t )  1  e 
(
  

t) 
(8) 

 
in the time interval t 0 . The scale, and shape parame-ters 

are restricted to the range 0 , and 0 , respec-tively, in 

general. We assume in addition that 1 , which corresponds 

to an Increasing Failure Rate (IFR) (degrading system), 

and preventive maintenance leads to a decrease in the 

total cost in this case. We also put 1 without loss of 

generality.  
The closed form solution of the g renewal equation 

does not exist, and numerical solutions are difficult to 

obtain. It is desirable to obtain the efficient algorithm in a 

maintenance optimization problem because obtaining the 

optimal length of the replacement cycle requires solving 

the g−renewal equation many times over. A comprehen-

sive list of works on solving the ordinary and the 

g−renewal equations can be found in [13]. In this paper, 

we consider two types of solutions: an improved Monte 

Carlo (MC) method, and an approximate formula for the 

g−renewal function. 
 
CALCULATION METHODS 

 

A. Monte Carlo method.  
A MC approach was introduced for solving the 

g−renewal problem in [9], and applied to the estimation of 

the expected number of repairs in warranty data analy-sis 

[10]. This raw simulation is quite time consuming, if 

obtaining many solutions for different values of process 

parameters is required, for example in warranty claims 

forecasts, or maintenance schedule optimization. An im-

provement of MC methods was suggested in [11], and 

effectively implemented in fault tree analysis [12]. The 

main result of this approach can be applied to the mainte-

nance optimization problem as well.  
The GRP is represented in [12] as a continuous time 

semi−Markov chain, whose state space is defined as a set 

of states of a system between the i−th and (i+1)−th fail-

ures (i=0, 1, 2, ...). 

 
  

W (t )Pi ,i 1(t ) (9) 
i  0 

 
 
 
 
 
 

 

Figure 1 – Simulation procedure according to (9) 

 
The implementation of (9) in the simulation proce-

dure is as follows. For each trial, and at each given time t, 

we consider all the failures that occurr at time Si < t. We 
have to put i > 0, because i=0 corresponds to the first 

term in (9). Each i−th time to failure ti at time S i (and 

corresponding vertical time Vi) is defined according to (6) 

and (8) by generating random numbers Fi in the simula-
tion process 
 

t  V 
 

ln 1 F  1/    V (11)  
i  i 1   i  i 1  

         
 

If necessary, the time to repair also can be included in 

the MC simulation. In this case, we consider Si as time 

immediately after the i−th repair. Then, we calculate the 
sum (9) of the corresponding probabilities of the transi-
tion to the next failure at the given time t 
 

W ( t ) F ( t) (1 exp( [ t (1 q )Si  
S i  t  

qSi   ] (12) 

 
as it is shown in [12], the maximum required number of 
MC simulation trials is N=4000 to reach a reasonably 
high accuracy. It takes about 0.05sec to obtain the result  
in the interval 0 W  t 10 on our computer having 4 
 
processors (2.51 GHz) and 6.0GB of RAM.  

B. Approximate solution for the renewal function. 

A simple approximate formula for the renewal func-

tion was suggested by the authors in [13]: 

 

W (t,  , q)  W (t,  )  q  W (t,  )  W (t,  )(13) 
0 1 0 
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where W0  t, is the renewal function correspond- 
 

ing to ORP, if q=0; W1(t , ) t is the exact solution 

corresponding to a minimal repair assumption, if q 1 .  
If 1 2 , 

 

  
  

a   b  
2 

, 
   

(14)    

1  c 
   

          

where a  0,3096; b  0,2846 , and c  0,2909.  If 

2 ≤ α ≤ 5,           

G 2  A  B t   0.5 q  H 

0 

D t ,  (15) 

0   0 0   0  

where k k 1 / k ! , and 
 

a k ( 1) 
k
  

1
 Ak / ( k 1) . The optimal number of terms 

 
in (16) is defined as n 17 , if 1 .  

These formulae were tested against the MC method. 
The relative error did not exceed 2.6% in intervals 

0 W  t 5 ,  1 5 , and  0 q 1 . The formulae 
 
were efficiently applied to the warranty prediction prob-

lem. We will use them to define the optimal replacing 

time in the maintenance optimization problem. We can 

expect that the accuracy of the calculation of the average 

total cost (2) will be even higher because of the increased 

calculation accuracy of W(t); the remaining terms in (2) 

are deterministic quantities, and have no uncertainty asso-

ciated with them.  

where  G0   1.112 ,  A0   0.2176, B0   0.2846 , CALCULATION RESULTS   

H0     0.09, and D0 0.48 .     
A. Maintenance Policy 1 

  

Function W0  t, 
 

is approximated with good accu- 
  

 The result of calculations corresponding to Policy 1 

racy using a two−point Padé function  is shown in Tables I−IV for various values of GRP pa- 

  
a1(  t)   ...  an (  t)

n
     A(  t)

n
  t 

 rameters and replacement cost C0 . We assume corrective 

W0 (t) (16) repair cost Cq   1 in all cases. These results are obtained 
 

     1  B(  t)
n 

 by approximate formulae (13)−(17), and the Monte Carlo 

     

/ 

   

, A  B /  . 

 method, respectively. The number of trials in the im- 

where B  2 an 
2 2 

 
2 

Coeffi- 
proved MC method was 10,000, which guarantees the 

   

relative Standard Error (SE) of the method to be less than 

cients  ak are defined by a simple recursive procedure 0.25%. Values of optimal replacement time T 
*
  and the 

according to         corresponding expected number of failures W T 
* 

are 
  A1 1      also provided in Tables I−IV.   

  
A

2 2 1 A1       
 ...    

k 1 
  (17)    

           
            

  
A

kki 
A

k  i     
i 1 

Table I – Optimal maintenance cost (C0 = 5, α = 2) 
 

Restoration factor, q 1 0.9 0.8 0.7 0.5 0.3 0.1 

Approximation 4.472 4.325 4.166 3.993 3.588 3.061 2.433 

Monte Carlo 4.473 4.319 4.152 3.975 3.568 3.027 2.231 
Monte Carlo SE 8.5E−3 8.0E−3 7.5E−3 7.0E−3 6.0E−3 4.7E−3 3.0E−3 

Length of cycle, T
* 

2.216 2.411 2.517 2.659 3.102 4.254 7.497 

Number of failures, W(T
*
) 4.915 5.407 5.4472 5.573 6.077 7.883 11.72 

Table II – Optimal maintenance cost (C0 = 3, α = 2) 
 

Restoration factor, q 1 0.9 0.8 0.7 0.5 0.3 0.1 

Approximation 3.464 3.369 3.267 3.152 2.883 2.525 1.949 

Monte Carlo 3.472 3.378 3.274 3.146 2.863 2.504 1.939 

Monte Carlo SE 7.3E−3 6.9E−3 6.5E−3 6.3E−3 5.5E−3 4.6E−3 3.0E−3 

Length of cycle, T
* 

1.719 1.808 1.879 2.091 2.552 3.350 6.026 

Number of failures, W(T
*
) 2.969 3.113 3.156 3.578 4.312 5.397 8.690 

 

Table III – Optimal maintenance cost (C0 = 5, α = 5) 

 

Restoration factor, q 1 0.9 0.8 0.7 0.5 0.3 0.1 

Approximation 5.977 5.798 5.582 5.268 4.549 3.676 − 

Monte Carlo 5.976 5.787 5.559 5.262 4.521 3.607 2.389 
Monte Carlo SE 5.0E−3 5.0E−3 4.2E−3 4.5E−3 3.7E−3 2.9E−3 1.7E−3 

Length of cycle, T
* 

1.038 1.129 1.193 1.377 1.726 2.497 5.289 

Number of failures, W(T
*
) 1.200 1.596 1.633 2.244 2.808 4.010 7.636 
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Table IV – Optimal maintenance cost (C0 = 3, α = 5) 

 

Restoration factor, q 1 0.9 0.8 0.7 0.5 0.3 0.1 

Approximation 3.973 3.898 3.815 3.709 3.276 2.781 − 

Monte Carlo 3.972 3.890 3.798 3.685 3.279 2.746 1.983 

Monte Carlo SE 2.9E−3 2.8E−3 2.5E−3 2.5E−3 2.7E−3 2.4E−3 1.5E−3 

Length of cycle, T
* 

0.937 0.992 1.047 1.156 1.487 2.167 4.407 

Number of failures, W(T
*
) 0.718 0.852 0.975 1.271 1.880 2.950 5.744 

 
The case of q=1 corresponds to the popular minimal 

repair model. Analyzing data from Tables I−IV, one can 

conclude that the model is not sensitive with respect to 

restoration factor q in the vicinity of q=1. For example, if the 

factor is changed from 1 to 0.9 (by 10%), the corre-sponding 

optimal cost decreases approximately by 3%. The sensitivity 

declines if C0 decreases. Therefore, the most popular, simple 

minimal repair model is a good approxima-tion for obtaining 

conservative estimation of the optimal cost, if the expected 

restoration factor is close to 1.  
Comparing the results obtained by the approximate 

and MC methods, we can see good agreement in the in-

terval of q 0.3 . If q 0.1 , we did not obtain a mini-  
mum cost value using the approximate formulae because 

they are valid in the range W T 5 . However, we be-  

lieve that C0 Cq , q 0 is not a practical case. If q is 
 
small, the g −renewal model is close to a perfect repair. In 

this case, it is more likely that C0 Cq because, if q 0 , 
 
the perfect repair at failure can be considered as if re-

placement happened unexpectedly (not at a scheduled 

time). 

We also considered the sensitivity of the perfect re-

pair model with respect to restoration factor q for vari- 

ous values of Weibull shape parameter , and replace-ment 

cost C0 Cq . If C0 is smaller compared to Cq  
( q 0 ), and the shape parameter is large, then the mini-mal 

cost slightly depends on restoration factor q . For 

example, if C0   0.5 ,5 , and  q  0 , the minimal 

total  cost min CT    0.934  is reached  at time  value 

T 
*
 0.679 , when the expected number of failures is small 

W T 
*
 0.130 , and the renewal process does not 

 
depend on q , as one would expect in this situation. We 

obtained min CT 0.935 if q 0.2 in this case. A cou-ple of 

curves represent the other case when C0 0.8 ,  
5 in Fig. 2.  

Curve 1 corresponds to q 0.2 , and has a minimum of 

1.352 at T 
*
 0.735 , when W T 

*
 0.194 . Curve 1' 

 
corresponds to perfect repair ( q 0 ). 
 

It has a local minimum very close to the previous 

one; however, it also has a maximum, and then it slowly 

decreases with cycle time T . Another couple of curves 2  

( q 0.2 ) and 2' ( q 0 ) correspond to the case C0 0.5 , 2 . 

Curve 2 has a minimum of 1.30 at T 
*

 1.063 , when W T 
*
 

0.876 . The total cost CT is always de- 

 
creasing over time if q 0 , which means that preventive 
 
replacement is not needed in this case. Corrective re-

placement is more efficient even though it is more expen-

sive. 
 
 
 
 
 
 
 
 

Figure 2 – Total cost CT depending on length 

of replacement cycle T 
 

B. Maintenance Policy 2  
The result of the calculations is shown in Tables 

V−VIII for various parameter values of the maintenance 

process with imperfect repair, and periodic replacement. 

According to Policy 2, the "target" number of failures n, 

when the unit is replaced by a new one, and corresponds 

to the minimal total cost, is calculated using the MC 

method. The corresponding values of the expected cycle  

length T 
*
 of the maintenance are also shown in Tables 

V−VIII.  
Policy 2 turns out to be more efficient compared to 

the Policy 1. The difference in minimal cost is changing 

from 7.7% to 18% in our examples, corresponding to the 

minimal repair model. The difference is decreasing if the 

restoration factor is decreasing. This comparison is made 

under the assumption that a periodical corrective re-

placement after the n−th failure in Policy 2 has the same 

cost as a scheduled preventive replacement in Policy 1. 

However, typically the scheduled maintenance cost is less 

expensive, and therefore Policy 1 can be more efficient. 
We suggest also an approximate solution for Policy 2 

based on previous calculations from Tables I−IV. n can be 
obtained as the closest integer to the expected number  

of failures W T 
* 

 
according to Policy 1. These numbers are represented in  

Tables V−VIII in separated rows, and denoted as n
*
 . In 

most cases, the numbers in the tables coincide with n. 
When they are different, we calculated the difference be-
tween the exact and approximate values of total cost. If 2 , 
this difference did not exceed 1%. If 5 , there  

is only one case with different values, when C0 3 , q 0.7 . 

The difference in total cost is only 1.8% in this  
case.  

To calculate approximate total cost based on data 

from Tables I−IV, we can suggest (18) instead of (3): 

 

 

61 

 , corresponding to optimal solution 



  C
0 C q (W T 

* 

1) 
  Tables I−IV. In addition, we have two cases when the 

CT   . (18) length of the cycle in formula (3) can be calculated di- 
 

T 
*   

       rectly. For the minimal repair model ( q  1 ), we have 
 

where W T 
*
 and T 

*
 are values from Tables I−IV. 

 
Data, corresponding to this formula, are shown in the first 

rows of Tables V−VIII.  
They provide lower bound estimation of the exact so-

lution of Policy 2. The upper bound can be obtained from 
 

Table V – Optimal maintenance cost (C0 = 5, α = 2) 

Tn n 1 / / n .  If q 0 (perfect  repair),  the  
length of the cycle is equal to n times of the Mean Time 
to Failure (MTTF) of the Weibull distribution  

Tn n 1  1 / . 

 

Restoration factor, q 1 0.9 0.8 0.7 0.5 0.3 0.1 
         

Approximation  4.023 3.9017 3.7533 3.600 3.249 2.793 2.096 

Monte Carlo  4.128 3.992 3.846 3.690 3.3223 2.854 2.135 

n  5 5 5 5 6 8 11 

n
*  5 5 5 6 6 8 12 

Length of cycle, T * 2.18 2.255 2.340 2.439 3.010 4.204 7.025 
        

 

Table VI – Optimal maintenance cost (C0 = 3, α = 2) 

 

Restoration factor, q 1 0.9 0.8 0.7 0.5 0.3 0.1 
         

Approximation  2.891 2.827 2.7440 2.667 2.473 2.208 1.774 

Monte Carlo  3.010 2.935 2.854 2.767 2.563 2.275 1.817 

n  2 3 3 3 4 5 8 

n
*  3 3 3 4 4 5 9 

Length of cycle, T * 1.329 1.704 1.752 1.807 2.341 3.077 5.50 
        

 

Table VII – Optimal maintenance cost (C0 = 5, α = 5) 

 

Restoration factor, q 1 0.9 0.8 0.7 0.5 0.3 0.1 
     

4.534 
   

Approximation  5.010 4.957 4.7217 3.9443 3.2078 2.200 

Monte Carlo  5.435 5.255 5.040 4.806 4.164 3.368 2.282 

n  1 2 2 2 3 4 8 

n
*  1 2 2 2 3 4 8 

Length of cycle, T * 0.920 1.142 1.190 1.248 1.681 2.375 5.258 
         

Table VIII – Optimal maintenance cost (C0 = 3, α = 5) 

 

Restoration factor, q 1 0.9 0.8 0.7 0.5 0.3 0.1 
     

3.082 
   

Approximation  3.112 3.114 3.045 2.7856 2.406 1.822 

Monte Carlo  3.262 3.262 3.262 3.204 2.875 2.4692 1.857 

n  1 1 1 2 2 3 6 
*  1 1 1 1 2 3 6 

n     

1.248 

   

Length of cycle, T * 0.920 0.920 0.920 1.391 2.025 4.308 
        

 
C. Maintenance Policy 3  
The main result of our calculations is represented in 

Tables IX−XII for various values of replacement cost C0 ,  
Weibull shape parameter , and restoration factor q . All 
 
calculations are completed by the MC method using (4) 

(rows in the Tables with the name “Approximation”), and  
(1) (rows under the name “Monte Carlo”). We observed a 

relatively small difference between these data. The maxi-

mum of the difference is about 2.7%, and corresponds to a  

minimal repair model with C0 3 in our examples. The 

difference is decreasing when the restoration factor is 

 
decreasing, and does not depend on the shape parameter. 
In addition, in these tables, we provided the following 
calculation results: Monte Carlo Standard Error (SE), time 

interval T3
*
 defined by Policy 3, and the expected length 

of replacement cycle T
*
 corresponding to the optimal 

maintenance cost.  
Analyzing data from these tables, we can conclude 

that the minimal repair model is also not sensitive to res-

toration factor q. If the factor is changed from 1.0 to 0.9 

(by 10%), the corresponding optimal cost decreases by 

3% at most in our examples, when C0 5 , 2 . 
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Table IX – Optimal maintenance cost (C0 = 5, α = 2) 

 

Restoration factor, q 1 0.9 0.8 0.7 0.5 0.3 0.1 

Approximation 4.030 3.909 3.777 3.622 3.271 2.821 2.123 

Monte Carlo 4.073 3.941 3.801 3.647 3.290 2.838 2.127 

Monte Carlo SE 9.7E−3 9.2E−3 8.6E−3 8.0E−3 6.8E−3 5.4E−3 3.2E−3 

T3
* 

1.914 2.021 2.198 2.304 2.765 3.368 7.090 

Length of cycle, T
* 

2.147 2.260 2.440 2.559 3.045 3.696 7.464 
 

Table X – Optimal maintenance cost (C0 = 3, α = 2) 

 

Restoration factor, q 1 0.9 0.8 0.7 0.5 0.3 0.1 

Approximation 2.893 2.837 2.769 2.694 2.503 2.240 1.804 

Monte Carlo 2.975 2.905 2.830 2.743 2.538 2.258 1.809 

Monte Carlo SE 9.4E−3 9.0E−3 8.5E−3 7.9E−3 6.8E−3 5.3E−3 3.0E−3 

T3
* 

1.347 1.383 1.560 1.631 1.914 2.694 4.892 

Length of cycle, T
* 

1.656 1.702 1.870 1.955 2.262 3.056 5.317 
 

Table XI – Optimal maintenance cost (C0 = 5, α = 5) 

 

Restoration factor, q 1 0.9 0.8 0.7 0.5 0.3 0.1 
         

Approximation  5.215 5.102 4.935 4.709 4.113 3.340 2.276 

Monte Carlo  5.285 5.146 4.969 4.736 4.126 3.347 2.277 

Monte Carlo SE  9.1E−3 8.3E−3 7.5E−3 6.7E−3 5.3E−3 3.6E−3 1.9E−3 
*  0.881 0.955 1.065 1.175 1.579 2.2403 4.995 

T3         

Length of cycle, T * 1.060 1.121 1.225 1.346 1.750 2.447 5.260 
        

 

Table XII – Optimal maintenance cost (C0 = 3, α = 5) 

 

Restoration factor, q 1 0.9 0.8 0.7 0.5 0.3 0.1 
         

Approximation  3.225 3.201 3.165 3.099 2.846 2.453 1.852 

Monte Carlo  3.311 3.267 3.207 3.126 2.870 2.461 1.852 

Monte Carlo SE  7.0E−3 6.6E−3 6.0E−3 5.4E−3 4.4E−3 3.2E−3 1.8E−3 
*  0.734 0.808 0.845 0.918 1.175 1.726 3.820 

T3         

Length of cycle, T * 0.994 1.036 1.070 1.141 1.435 1.986 4.131 
        

 

The difference declines if C0 decreases. 
 

Comparing calculation results for Policies 1 and 3, we 

conclude that Policy 3 is the most efficient in the case of the 

minimal repair model. The difference in the minimal cost 

changes from 9% to 17% in our examples. It is in-creasing if 

the periodical replacement cost is declining, and the Weibull 

shape parameter increases. However, in Policy 1, 

replacement is considered as preventive maintenance at the 

scheduled time, and can be less expensive than the cor-

rective maintenance in Policy 3 at the time of failure. Our 

calculations show that, if the difference in replacement cost 

between the two considered cases is greater than 20%, Pol-

icy 1 is more efficient. In each particular practical case, an 

appropriate policy should be selected.  
All results of the calculations show that Policy 3 is 

the most efficient among the considered three, as it is 

proven in [13] for the general case. However, the differ-

ence between Policies 3 and 2 is small. Its maximum was 

2.8% for minimal repair when C0 5 , 5. 

Comparing calculation results for T 3
*
 corresponding to 

Policy 3 and optimal length of cycle T
*
 from Tables I−IV, 

we derived that the ratio almost does not depend on restora- 

 
tion factor q or shape parameter α. It can be represented as 
 

T 
*
   kT 

*
 , (19) 

3   

where coefficient k depends on replacement cost C0. 

If C0 3 , then k 0.8 ; if C0 5 , then k 0.87 .  
We approximated this logical dependence by a linear 

function k 0.695 0.035C0 , and tested it against the  
MC method according to data from Tables IX−XII. The 
difference in the calculation of minimal total cost was not 
greater than 0.35%. Therefore, (19) yields a good ap-

proximation for optimal time T3
*
 of Policy 3. 

In all the above calculation examples, corrective re-

pair cost Cq and replacement cost C0 did not depend on 
 
time or on the restoration factor. More general, practical 

cases will be considered in Section IV.  
D. Procedure of finding optimal solution  
Eventually, we implemented the described methodol-

ogy in software which allows us to calculate optimal re-

placement times according to a maintenance policy se-

lected by the user. At the first stage of the calculation, we 
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use the approximate formulae corresponding to Policy 1. 

If Policy 2 or 3 is selected, then (18) and (19) are used in 

addition. This approximation was used as a first step. 

Next, a more accurate solution is obtained using the MC 

method. Only about 20 additional steps of the MC calcu-

lation are required to obtain an accurate optimal solution. 

We used multithreading in our software, which decreased 

the calculation time by about 4 times on our computer 

having 4 processors. It takes less than 1 second to calcu-

late the final result. Because the optimization in question 

is done with respect to just one parameter, any optimiza-

tion method can be used. We have used the method of 

gradient decent. 
 

CONCLUSIONS 

 

In this paper, we studied three of the most popular 

maintenance policies allowing us to define the optimal 

time to replace the unit with a new one. The failure proc-

ess is described by the g−renewal Kijima model under the 

Weibull failure−time distribution function. The difficulty 

of the g–renewal process is that its g–renewal equation 

does not have a closed form solution in this case. We 

proposed two efficient solutions (an improved Monte Car-

lo method, and our previously obtained approximate solu-

tion), which enable an in–depth comparative analysis of 

the maintenance polices. The policies are compared for 

various values of the model parameters. The sensitivity of 

each model is studied with respect to the restoration fac-

tor. Practical cases are considered to show both the impor-

tance of maintenance optimization using a g−renewal 

model and the efficiency of the suggested Monte Carlo 

and approximate methods. The obtained calculation re-

sults can be used as a benchmark for developing other 

approximate methods. 
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Анотація 

 

ПОРІВНЯЛЬНИЙ АНАЛІЗ ОПТИМАЛЬНИХ  
ІНТЕРВАЛІВ ПЛАНОВО-ПОПЕРЕДЖУВАЛЬ- 

НИХ РЕМОНТІВ У РАМКАХ ПРОЦЕСУ  
G-ВІДНОВЛЕННЯ З БАЗОВИМ РОЗПОДІЛОМ 

ВЕЙБУЛЛА 

 

Кривцов В. В., Євкін О. Ю. 

 
Досліджуються два оптимальні методи планово-

попереджувальних ремонтів у рамках g-відновлення з 

базовим розподілом Вейбулла. Перший базується на 

раніше отриманій наближеній формулі для g-

відновлення, а другий є вдосконаленим методом Мон-

те-Карло. Ці методи дозволяють поглибити порівня-

льний аналіз політик ремонту. Пропонується ефек-

тивний алгоритм для знаходження оптимального 

періоду для виконання планово-попереджувальних 

ремонтів. 
 
Аннотация 

 

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ОПТИМАЛЬНЫХ  
ИНТЕРВАЛОВ ПЛАНОВО-ПРЕДУПРЕДИ-  

ТЕЛЬНЫХ РЕМОНТОВ В РАМКАХ ПРОЦЕССА 

G-ВОССТАНОВЛЕНИЯ С БАЗОВЫМ 

РАСПРЕДЕЛЕНИЕМ ВЕЙБУЛЛA 

 

Кривцов В. В., Евкин A. Ю. 

 
Исследуются два оптимальных метода планово-

предупредительных ремонтов в рамках g-

восстановления с базовым распределением Вейбулла. 

Первый основывается на ранее полученной формуле 

для g-восстановления, а второй является усовершен-

ствованным методом Монте-Карло. Эти методы 

позволяют углубить сравнительный анализ политик 

ремонтов. Предложен эффективный алгоритм для 

нахождения оптимального периода для выполнения 

планово-предупредительных ремонтов. 
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