УДК 633.854.78:631.527.5

ОСОБЕННОСТИ ПРОХОЖДЕНИЯ МЕЙОЗА У МЕЖВИДОВОГО ГИБРИДА HELIANTHUS NEGLECTUS × HELIANTHUS ANNUUS

© 2009 г. Т. А. Долгова

Национальный фармацевтический университет (Харьков, Украина)

Изучали поведение хромосом в мейозе у межвидового гибрида F_1 , полученного при скрещивании однолетнего диплоидного вида H. neglectus Heiser с культурным подсолнечником H. annuus X 1006-Б. В диакинезе гибрида F_1 наблюдали 97,3 % клеток с 17 бивалентами. Дальнейший мейоз проходил с большим количеством нарушений, максимальная частота которых приходилась на анафазы мейоза I и II (78, 6 и 94,5 % соответственно). В результате 23,9 % тетрад имели нарушения. Проведено сравнение нарушений мейоза с полученными ранее гибридами F_1 H. $praecox \times H$. annuus X 1006-Б и H. annuus ANN 1064 (дикий) \times H. annuus X 1006-Б.

Ключевые слова: Helianthus L., межвидовая гибридизация, мейоз

Род Helianthus L. по общепризнанной классификации Шиллинга и Хейзера (1981) включает 49 дикорастущих североамериканских видов, разделенных на 4 секции (Helianthi и Agrestes — однолетние виды, Ciliares и Divaricati — многолетние). Этот род представлен четко выраженным полиплоидным рядом. Он включает диплоидные (2n=34), тетраплоидные (2n=68) и гексаплоидные (2n=102) виды. К диплоидам относятся культурный подсолнечник (H. annuus), все однолетние дикорастущие формы и большинство многолетних видов.

Дикие виды рода Helianthus являются потенциальными источниками генов устойчивости к болезням и вредителям, неблагоприятным условиям произрастания, а также генов, контролирующих качество семян, ЦМС и Rf-генов, что позволяет использовать дикие виды с целью интрогрессии чужеродного генетического материала в геном культурного подсолнечника (Гаврилова и др., 2003). Исследованиями ряда авторов (Георгиева-Тодорова, 1990; Попов и др., 20056; Heiser et al., 1962; Heiser et al., 1964) показано, что культурный подсолнечник легко скрещивается с однолетними диплоидными видами, трудно или почти не скрещивается с мно-

льцы гибридов F₁ между культурным подсолнечником и *H. argophyllus* (Georgieva-Todorova, 1993; Quillet et al., 1995), *H. petiolaris* (Georgieva-Todorova, 1993), *H. bolanderi* (Hristova, 2004), *H. praecox* (Юшкина и др., 2009; Vassilevska-Ivanova et al., 1993), *H. debilis* (Georgieva-Todorova, 1993), диким *H. annuus* (Dolgova et al., 2007). Результаты исследований показали, что *H. annuus*, *H. argophyllus*, *H. debilis* и *H. petiolaris* в скрещиваниях с культурным подсолнечником имеют меньше нару-

шений мейоза и более жизнеспособную пыльцу

голетними видами. Жизнеспособность пыльцы

полученных межвидовых гибридов (МВГ) за-

висит от нарушений поведения хромосом в ме-

йозе. Поэтому анализ мейоза у гибридов явля-

ется необходимым условием при межвидовой

гибридизации. Кроме того, анализ микроспоро-

генеза и пыльцевой жизнеспособности у МВГ

важен для определения филогенетических вза-

имоотношений в роде Helianthus. Так, анализ

мейоза и жизнеспособности пыльцы МВГ под-

солнечника показал, что однолетние диплоид-

ные виды различаются 0-6 транслокациями и 0-

8 парацентрическими инверсиями. Это свиде-

тельствует о том, что основное хромосомное

число подсолнечника (n=17) произошло от раз-

ние мейоза и снижение жизнеспособности пы-

К настоящему времени изучено наруше-

ных геномов (Chandler et al., 1986).

Адрес для корреспонденции: Долгова Татьяна Анатольевна, Национальный фармацевтический университет, ул. Мельникова,12, Харьков, 61002, Украина;

e-mail: tadolga@rambler.ru

по сравнению с H. bolanderi и H. praecox. В скрещиваниях культурного подсолнечника с двумя разными популяциями H. neglectus была выявлена низкая фертильность пыльцы гибридов F_1 (5,1 и 6,3%) (Atlagic, 1990). Данные по изучению поведения хромосом в мейозе у $MB\Gamma$ H. $neglectus \times H$. annuus в литературе представлены фрагментарно. В связи с этим целью нашей работы было изучение особенностей прохождения мейоза у $MB\Gamma$ H. $neglectus \times H$. annuus.

МЕТОДИКА

В качестве материнской формы использовали однолетний диплоидный вид *H. neglectus* Heiser (NEG-1086), полученный из Северо-американской опытной станции. Отцовской формой была инбредная линия культурного подсолнечника *H. annuus* X 1006-Б селекции Института растениеводства им. В.Я. Юрьева, которая является закрепителем стерильности и используется для создания большинства коммерческих гибридов института. Для получения МВГ у материнских форм в утренние часы в течение 3-4 дней удаляли тычинки путем ручной кастрации, затем эти растения опыляли пыльцой отцовской формы.

Для изучения мейоза у гибридов F_1 вырезали сегменты корзинок с пыльниками на R_2 стадии онтогенеза (Schneiter, 1981), фиксировали в уксусном алкоголе (1:3) в течение 12 часов. Затем трижды промывали этиловым спиртом и оставляли на хранение в 70% растворе этилового спирта при температуре +4°С. Окрашивание хромосом материнских клеток пыльцы проводили реактивом Шиффа (фуксинсернистая кислота) по Фельгену (Паушева, 1988). Мейоз изучали на давленных в капле 2% ацетокармина временных препаратах.

Статистическую значимость различий между выборочными долями оценивали с помощью *F*-критерия Фишера (Лакин, 1980). В таблицах приведены ошибки долей.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для сравнения мейоза гибрида $H.\ Neglectus \times H.\ annuus \ X \ 1006-Б \ в \ таблицах приведены полученные нами ранее данные (Dolgova et al., 2007) по изучению мейоза у МВГ <math>H.\ Praecox \times H.\ annuus \ X \ 1006-Б \ и \ H.\ annuus \ ANN \ 1064$ (дикий) $\times H.\ annuus \ X \ 1006-Б.\ Результаты изучения поведения хромосом у гибридов <math>F_1$ в диакинезе представлены в Tafon 1. На этой стадии мейоза у Tufon Tufon

встречались несколько типов конъюгации хромосом. Наиболее часто - биваленты (97,3 % клеток, рисунок). В большинстве случаев биваленты были открытые (в виде цепочек), реже закрытые (в форме колец), среднее количество последних в мейоцитах составило 5,0±2,5. Уровень синапсиса хромосом (количество хиазм на клетку и на бивалент, количество закрытых бивалентов в клетке) у гибрида H. $neglectus \times H$. annuus, как и у H. annuus (дикий) \times H. annuus, был более высоким и достоверно превышал эти показатели у гибрида H. $praecox \times H$. annuus. Другие типы хромосомных ассоциаций встречались в единичных мейоцитах и были представлены одним тетравалентом в клетке (15_п + 1_{IV}) и одной добавочной хромосомой (18_{II}).

Количество клеток с нарушениями в метафазе I у гибрида *H. neglectus* × *H. annuus* увеличилось до 24,8 %. Все нарушения на этой стадии мейоза были представлены 1-5 хромосомами, находящимися вне экваториальной пластинки (рисунок). При последующем анафазном движении наблюдали отставание хромосом (73,8 % клеток), образование мостов и сочетание мостов с отстающими хромосомами (4,8 %). Отстающими были 1-5 хромосом или 2-6 гомолога. Мейоз I у гибрида *H. neglectus* × *H. annuus* заканчивался образованием 45 % клеток с отстающими хромосомами.

Во втором делении мейоза наблюдались в основном те же отклонения в поведении хромосом, что и в первом. В метафазе II 11 % клеток содержали мост между двумя экваториальными пластинками, 30,1 % клеток – хромосомы вне экваториальной пластинки и 37 % клеток сочетали в себе оба этих нарушения. Максимальное (94,5 %) количество клеток с нарушениями в поведении хромосом наблюдали на стадии анафазы II (табл. 2). На этой стадии мейоза преобладали клетки с отстающими хромосомами (71,4 %), незначительное количество клеток было с мостами (2,2 %), 20,9 % клеток имели мосты и отстающие хромосомы. На стадии четырех ядер наблюдали снижение количества клеток с нарушениями до 28,7 %. Вероятнее всего, большая часть поврежденных клеток из анафазы II не перешла к следующей стадии мейоза. Основным типом нарушений в телофазе II было отставание 1-5 хромосом (22,3 % клеток), 5,4 % клеток содержали микроядра, 3 % клеток имели 3 или 5 ядер.

Второе деление мейоза у подсолнечника заканчивается образованием тетрад по симультанному (одновременному) типу с изобилатеральным расположением микроспор (рисунок).

Уровень конъюгации хромосом и частота хромосомных ассоциаций на стадии профазы мейоза I

Ē	Всего изучено	Количество хназм	во хназм	Количество закрытых	è.	Унивал	енты, %	Тетравал	енты, %	Униваленты, % Тетраваленты, % ленты, %	
т иориды т	клеток,	на	на	бивалентов	I /II+ %	C+ 21	16 ±4	14 41	12 +2	, T	наруше-
	ШТ,	мейоцит	бивалент	в клетке		10IIT4I	1-111C1	VITTICI	IOHTZI IOHTZIV IOHTZIV IHHTIVI	I4IITIVI	ния, 70
H. neglectus × H. annuus X1006-Б	73	22,15±4,86	1,30±1,30	73 22,15±4,86 1,30±1,30 5,03 ±2,51 97,3±1,9 0	97.3±1,9	0	0	1,4±1,4 0	0	0	1,4±1.4
H. amuus ANN-1064 × H. annuus X1006-B	287	22,02±0,12	1,30±0,01	12 1.30±0.01 4,99 ±0.12 87.1±2,0 1.0±0,6	87.1±2,0	9,0±0,I	0	0,3±0,3	0	0	11.5±1,9
H. praecox × H. annuus X1006- 5	192	19,72±0,11	1,16±0,01	192 19,72±0,11 1,16±0,01 2,67±0,10 79,2±2,9 9,4±2,1 2,1±1,0 4,7±1,5 0,5±0,5 1,0±0,9 3,1±1,3	79,2±2,9	9,4±2,1	$2,1\pm 1,0$	4,7±1,5	0,5±0,5	$1,0\pm0,9$	$3,1\pm 1,3$

Таблица 2

Частота материнских клеток пыльцы с нарушениями на разных стадиях мейоза у межвидовых гибридов подсолнечника

<u> </u>	H3y4 TOK H CT	Изучено клеток на разных стадиях мейоза	Про	Профаза I	Метаф	афаза I	Ана	Анафаза I	Тело	Телофаза I	Мета	Метафаза II	Ана	Анафаза II	Теп	Телофаза II	Ter	Тетрады
75	BCCLO	с наруше- миями, %	BCCTO	- наруше- миями, %	BCCLO	-эшүсн э мимин, %	BCGLO	с наруше- % ,пмвин	BCGLO	с наруше-	BCCLO	-е наруше- миями, %	BCCLO	-эшүсн э % ,имкин	BCGLO	с наруше- миями, %	BCCLO	с наруше. % ,мя
H. neglectus × H. annuus X1006-B	1083	1083 38,6±1,5 73 2,7±1,9 101	73	2,7±1,9	101	24,8±4,7	35	78,6±4,5 100 45,0±5,0	100	45,0±5,0	73	78,1±4,8	16	94,5±2,4 202	202	28,7±3,2	368	23,942,2
H. annuus ANN-1064× H. annuus X1006- 5	4343	8,9±0,4" 287 12,9±2,0 603	287	12,9±2,0	603	17,1±1,5	533	11,6±1,4 459 2,61±0,7	459	2,61±0,7	432	8,1±1,3	399	6,8±1,3 493	493	2,6±0,7	1137	8,5±0,8
H. praecox × H. annuus X1006- 5	2811	2811 29,6±0,9* 192 20,8±2,9 401	192	20,8±2,9	401	25,2±2,2	256	256 41,1±3,1 249 32,9±3,0 237	249	32,9±3,0	237	44,4±3,2	327	63,0±2,7	370	44,4±3,2 327 63,0±2,7 370 19,5±2,1	671	10,6±1,2*

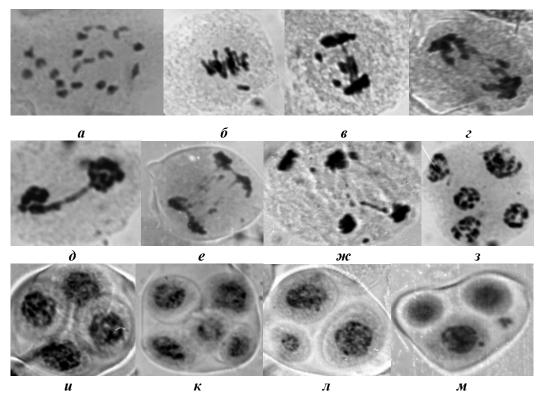

Примечание. * - достоверно отличается от H. $neglectus \times H$. $ammus \times 1006$ -Б $rpin P \le 0,001$

Таблица 3

	дсолнечника
	0B no
	брид)
	Вых ги(
	ДОВЬ
	у межви
	V Q
	опоос
	MHK
	трад
	Terp
	ЭЕКТНЫХ
	Лес
	IX H
	JIBHB
	_
	стота нор
	ĕ
,	

7	Всего	Средняя ча	Средняя частота тетрад, %	Монады,	Днады,	Триады,	Полнады,	Другие
I NOPHABI F1	изучено клеток, шт.	норма	с микроядрами	%	%	%	%	нарушения, %
H. neglectus × H. annuus X1006- Б	368	76,1±2,2	13,6±1,8	0	1,9±0,7	6,0±1,2	€,0±8,0	1,6±0,7
H. annuus ANN-1064 × H. annuus X1006-E	1137	91,5±0,8	0,4±0,2	0,3±0,2	0,1±0,1	1,0±0,3	6,0±0,7	0,7±0,2
H. praecox \times H. annuus X1006- B	671	89,4±1,2	6,8±1,0	0	0,9±0,4	1,0±0,4	1,2±0,4	0,6±0,3

ДОЛГОВА

Микрофотографии мейоза у межвидового гибрида *Н. neglectus* \times *Н. annuus*: a-17 бивалентов в диакинезе, $\delta-$ хромосома вне метафазной пластинки, $\varepsilon-$ мост с отстающими хромосомами в анафазе I, $\varepsilon-$ отстающие хромосомы в анафазе II, $\varepsilon-$ мост в метафазе II, $\varepsilon-$ мосты и отстающие хромосомы в анафазе II, $\varepsilon-$ отстающие хромосомы в телофазе II, $\varepsilon-$ в дер в телофазе II, $\varepsilon-$ нормальная тетрада, $\varepsilon-$ пентада, $\varepsilon-$

Результаты формирования нормальных и дефектных тетрад микроспор у гибридов представлены в табл. 3. Несмотря на высокую частоту аномалий в мейозе, у гибрида *Н. neglectus* × *Н. аппииз* преобладали внешне нормально развитые тетрады (76,1 %). Остальные клетки были представлены большей частью тетрадами с микроядрами (13,6 %). 1,9 и 6 % клеток приходились соответственно на диады и триады, 0,8 % — на пентады, 1,6 % тетрад имели неравные ядра.

Таким образом, исследование поведения хромосом в мейозе у гибрида H. $neglectus \times H$. annuus выявило, что, несмотря на внешне полную конъюгацию хромосом в диакинезе, последующие стадии мейоза проходили с многочисленными нарушениями. Количество нормально сформированных тетрад у гибрида H. $neglectus \times H$. annuus (76,1%) было достоверно ниже этого показателя у гибридов H. annuus (дикий) $\times H$. annuus (91,5%) и H. $praecox \times H$. annuus (89,4%). Завязываемость семянок при скрещивании с культурным подсолнечником составила у H. neglectus 34,6±2,2% (Попов и др., 2005а), у H. annuus (дикий) - 79,8%, у

Н. praecox — 61,3 % (Попов и др., 2005б). Несмотря на большое количество нарушений в диакинезе у гибрида Н. praecox × Н. annuus, вид Н. praecox, вероятно, является более близким к культурному подсолнечнику, чем Н. neglectus, в диакинезе МВГ которого не было видимых нарушений. Результаты наших предыдущих исследований (Dolgova et al., 2007) и данной работы согласуются с результатами молекулярного анализа хлоропластной ДНК и ядерных рибосомальных генов, полученными Райзерберг с соавт. (Rieserberg et al., 2007), свидетельствующими о том, что Н. argophylus является более близким видом к Н. annuus, чем Н. neglectus и Н. praecox.

ЛИТЕРАТУРА

 Γ аврилова В.А., Анисимова И.Н. Генетика культурных растений. Подсолнечник. — СПб.: ВИР. — 2003. — 209 с.

Георгиева-Тодорова Й. Генетични и цитогенетични изследвания на род *Helianthus* L. – София: Българската академия на науките, 1990. – 132 с.

 \mathcal{N} акин $\Gamma.\Phi.$ Биометрия. – М.: Высш. шк., 1980. – 294 с.

ОСОБЕННОСТИ ПРОХОЖДЕНИЯ МЕЙОЗА

 Π аушева $3.\Pi$. Практикум по цитологии растений. – М.: Агропромиздат, 1988. - 217 с.

Попов В.Н., Юшкина Л.Л., Скрещиваемость диких видов подсолнечника с инбредными линиями и развитие незрелых зародышей в условиях *in vitro* // Сб. докл. 3-й между нар. конф. молод. ученых и специалистов «Актуальные вопросы селекции, технологии и переработки технических культур». – Краснодар, 2005а. – С. 42-46.

Попов В.Н., Юшкина Л.Л., Шарыпина Я.Ю., Кириченко В.В. Генотипические особенности скрещиваемости культурного подсолнечника с дикими видами и использование эмбриокультуры при отдаленной гибридизации // Цитология и генетика. — 20056. - T. 39, №1 - C. 3-8.

Юшкина Л.Л., Нестерова Е.В., Кириченко В.В. и др. Цитогенетическое изучение межвидового гибрида *Helianthus praecox* \times *H. annuus*, его родительских форм и двух беккроссов // Цитология и генетика. -2009. - T. 43, №1. - C. 42-47.

Atlagic J. Pollen fertility in some Helianthus L. species and their F_1 hybrids with the cultivated sunflower // Helia. – 1990. – N013. – P. 47-54.

Chandler J., Jan C.C., Beard H. Chromosomal differentiation among the annual *Helianthus* sp. // Sistematic Botany. -1986. -V.11, No.1. -P.354-371.

Dolgova T.A., Yushkina L.L., Popov V.N. Cytogenetic study of F_1 interspecific hybrids of the section *Helianthus* // Helia. – 2007. – V. 30, №47. – P.51-60.

Georgieva-Todorova J. Interspecific hybridization and its application in sunflower breeding // Biotechnology & Biotechnological equipment. -1993.-N24. -P.153-157.

Heiser C.B., Martin W.C., Smith D.M. Species crosses in Helianthus. I. Diploid species // Brittonia. – 1962. – V. 14. – P. 137-147.

Heiser C.B., Smith D.M. Species crosses in Helianthus. II. Polyploid species // Rhodora. – 1964. – V. 66, №768. – P. 344-358.

Hristova-Cherbadzi M.M. Hybridization of cultivated sunflower Helianthus annuus with wild annual species Helianthus bolanderi, Helianthus neglectus, Helianthus petiolaris // 16th International Sunflower Conference. – Fargo: ND USA, 2004. – P. 699-707.

Quillet M.C., Madjidian N., Griveau Y. et al. Mapping genetic factors controlling pollen viability in an interspecific cross in *Helianthus* sect. *Helianthus* // Theor. Appl. Genet. – 1995. – V. 91. – P. 1195-1202.

Rieseberg L.N., Kim S.-C., Randell R.A. et al. Hybridization and the colonization of novel habitats by annual sunflowers // Genetica. – 2007. – V.129. – P. 149-165.

Schilling E.E., Heiser C.B. Infrageneric classification of Helianthus (Compositae) // Taxonomy. -1981. - N = 30. - P. 393-403.

Schneiter A., Miller J. Description of sunflower growths stages // Crop Sci. – 1981. – V. 21. – P. 901-903.

Vassilevska-Ivanova R., Telbizova T. Hybridization of Helianthus praecox ssp. praecox Engl. & Gray (2n=34) with cultivated sunflower Helianthus annuus L. (2n=34) III. Cytological studies on backross and sibpollinated generation // Biotechnology & Biotechnological eguipment. − 1993. − №4. − P. 139-141.

Поступила в редакцию 09.02.2009 г.

THE PECULIARITIES OF MEIOSIS PASSING IN INTERSPECIFIC HYBRID HELIANTHUS NEGLECTUS × HELIANTHUS ANNUUS

T. A. Dolgova

National Pharmaceutical University (Kharkiv, Ukraine)

Key words: Helianthus L., interspecific hybridization, meiosis

ДОЛГОВА

ОСОБЛИВОСТІ ПЕРЕБІГУ МЕЙОЗУ У МІЖВИДОВОГО ГІБРИДА $HELIANTHUS\ NEGLECTUS imes HELIANTHUS\ ANNUUS$

Т. А. Долгова

Національний фармацевтичний університет (Харків, Україна)

Вивчали поведінку хромосом у мейозі у міжвидового гібрида F_1 , який був отриманий від схрещування однорічного диплоїдного виду H. neglectus Heiser з культурним соняшником H. annuus X 1006-Б. У діакінезі гібрида F_1 спостерігали 97,3% клітин з 17 бівалентами. Подальший мейоз проходив зі значною кількістю порушень, максимальна частота яких припадала на анафази мейозу І и ІІ (78, 6 та 94,5 % відповідно). У результаті 23,9% тетрад були з порушеннями. Проведено порівняння порушень мейозу з отриманими раніше гібридами F_1 H. $praecox \times H$. annuus X 1006-Б та H. annuus ANN 1064 (дикий) $\times H$. annuus X 1006-Б.

Ключові слова: Helianthus L., міжвидова гібридизація, мейоз