Следует отметить, что с увеличением скорости трения микрогеометрия поверхности бронзы имеет тенденцию к увеличению параметра R_a, в то время как чугун при всех скоростях сохраняет в одних пределах.

Таким образом, в условиях абразивного износа, независимо от скоростей трения, высокопрочный чугун имеет меньший износ [1] и лучшую микрогеометрию поверхности, чем бронза в тех же условиях, что позволяет сделать вывод о замене в парах трения сельскохозяйственной техники дефицитного материала бронзы на более дешевый материал — высокопрочный чугун. Это позволит увеличить срок службы этих пар трения и получить значительный экономический эффект.

ЛИТЕРАТУРА

 Павлюченко Т. Г. Исследование извосостойкости конструкционных материалов, применяемых в сельскохозяйственном машиностроении. — В сб. и. тр. «Ремонт машин и технология металлов», МИИСП, т. XII, вып. 4, ч. II. М., 1975.

 Ермолов Л. С., Павлюченко Т. Г. Усовершенствование машины трения МИ-1М для изучения изнашивания материалов на различных скоростях.— Сб. н. тр. «Ремонт машин и технология металлов», МИИСП, т. Х. вып. 4, ч. П. М., 1973.

УДК 669.017; 539.319

РАСПРЕДЕЛЕНИЕ ОСТАТОЧНЫХ МИКРОНАПРЯЖЕНИЙ ПОСЛЕ ПЛАСТИЧЕСКОГО ИЗГИБА

Н. Д. БОЙКО, Ю. Ф. БОЙКО, В. К. АВЕТИСЯН

Процесс изготовления и восстановления деталей машин часто сопровождается пластической деформацией, которая приводит к изменению механических свойств металлов. При этом может наблюдаться как упрочнение, так и разупрочнение при последующем нагружении или в процессе эксплуатации изделия, что связано со структурными изменениями, происходящими в металлах при предварительной пластической деформации.

Во всех случаях пластической деформации в металлах возникают остаточные напряжения различного рода, оказывающие существенное влияние на механические свойства металлов [1, 2]. Особый интерес представляют остаточные орнентированные микронапряжения (ОМН) [3], влияние которых на свойства металлов при последующем деформировании определяется соотношением системы главпых орнентированных микронапряжений и внешних напряжений [4]. Однако орнентированные микронапряжения, в основном, исследовались после однородной пластической деформа-34 ции (растяжение, сжатие). Практически не изучен вопрос о влиянии неоднородной пластической деформации на распределение ориентированных микронапряжений, хотя, как правило, изготовление и восстановление деталей сопровождается именно неоднородной деформацией (ковка, штамповка, изгиб и т. п.).

Поэтому целью настоящей работы явилось изучение распределения остаточных ориентированных микронапряжений после пластического изгиба.

Исследования ориентированных микронапряжений проводились на образцах из листовых сталей ІОХСНД и 17Г2АФ. Заготовки размером 120×500 мм² вырезались из листов толщиной 8, 10 и 20 мм вдоль и поперек направления проката, термообрабатывались (закалка с 950°С и отпуск при 680°С) и подвергались деформации по схеме чистого изгиба. Прогиб образца при изгибе составлял 150 мм на метр, что соответствовало деформации наружного волокна 0,4; 0,5; 1,0% для толщин 8, 10 и 20 мм соответственно. Варьировалось и напряженное состояние образца при изгибе за счет изменения отношения ширины заготовки *b* к ее высоте *h*: при $\frac{b}{h} < 3$ — одноосное напряженное состояние, $\frac{b}{h} > 5$ плоское напряженное состояние [5].

Из пластически деформированных заготовок вырезались образцы для испытания на растяжение и последующего исследования распределения ориентированных микронапряжений, причем, образцы для исследования ориентированных микронапряжений размером $10 \times 10 \times 2$ мм³ вырезались по толщине и ширине дсформированной заготовки таким образом, чтобы плоскость, в которой определялись компоненты ориентированных микронапряжений, была параллельна внешним силам, действующим при изгибе. Вырезка образцов позволила разделить влияние ориентированных микронапряжений и макронапряжений на положение дифракционной линии [1, 6]. Перед рентгенографированием поверхность образцов травилась в 35% растворе азотной кислоты в воде для удаления наклепанного при вырезки слоя.

Определение величины ориентированных микронапряжений проводилось рептгенографически, методом наклонных съемок ($\sin^2\psi$ — метод), с учетом влияния перпендикулярной к поверхности компоненты ориентированных микронапряжений [6]. Наклонные съемки проводились на дифрактометре ДРОН-1,5 под углами ±40, ±50, ±60° в излучении кобальтового анода. Регистрация линий (310) ($\vartheta \sim 81^\circ$) а-фазы осуществлялась поточечно через 0,1° методом накопления числа импульсов за время 40 с. с последующим выводом информации на цифропечать. Учитывалось взаимодействие K_{α} -дублета. Все это позволило определить межплоскостное расстояние с точностью ±2.10⁻⁴ Å, что дает 3*

ошибку при определении напряжений $\pm 2 \ \kappa\Gamma/mm^2$. Значения упругих постоянных Е и μ принимались как средние значения, вычисленные по моделям Фойгта и Рейсса [6] — $E = 2,25 \cdot 10^4 \ \kappa\Gamma/mm^2$, $\mu = 0,28$.

Величины главных оринтированных микронапряжений на наружных волокнах пластически изогнутых образцов из сталей 10ХСНД и 17Г2АФ приведены в табл. 1. Там же приведены значения ширины дифракционной линии (310) и значения предела текучести при последующем растяжении пластически деформированных изгибом заготовок.

В работе предполагалось исследовать изменение дезориентированных микронапряжений и величину блоков в зависимости от схемы деформирования, то есть получить информацию об изменении субструктуры материала в ходе деформации. Однако, как видно из табл. 1, уширение дифракционных линий незначительно, отношение ширины дифракционной линии деформированного металла к ширине линии недеформированного (термообработанного) ~1,5, а к ширине линии отожженного ~2, что при вычислении значений дезориентированных микронапряжений и величины блоков дает ошибку более 100% [7]. Поэтому определение характеристик тонкой структуры не проводилось.

Анализ данных (см. табл. 1) показывает, что деформирование по исследуемым схемам приводит к возникновению системы главных ориентированных микронапряжений, соответствующей трехосному напряженному состоянию, причем, для стали 10ХСНД для исследуемых схем деформации, толщины образцов и направления вырезки имеем: $\sigma_{i1} > 0$, $\sigma_{i2} > 0$, а $\sigma_{i3} < 0$ (в отдельных случаях $\sigma_{i1} = \sigma_{i2}$) как на сжатой так и на растянутой сторонах образца. Такой закономерности не наблюдается для стали 17Г2АФ.

В отдельных случаях ориентированные микронапряжения возникают и после термической обработки. Величина их меньше, чем после пластической деформации, а распределение соответствуст тому, что наблюдается на исследуемых образцах. Величина компонент микронапряжений зависит, в основном, от марки стали, т. е. от ее химсостава и структуры.

Для выяснении вопроса о влиянии напряженного состояния образца на распределение ориентированных микронапряжений нами проводились исследования распределения ориентированных микронапряжений по ширине и толщине (высоте) образца стали 10ХСНД толщиной 20 мм и шириной 40 мм $\left(\frac{b}{h} = 2\right)$ и 120 мм $\left(\frac{b}{h} = 6\right)$. Степень деформации наружного волокна составляла 1%.

Распределение главных ориентированных микронапряжений по ширине и толщине пластически деформированных изгибом образцов приведены на рис. 1 и рис. 2. Из рис. 1 видно, что распределение микронапряжений однородно по ширине как узкого так и ши-36 Ta6лица 1

Значения компонент ориентированных микронапряжений, физической ширины линии р и предела текучести (σ.) сталей после пластического изгиба

		.asqm .f	11	16.0 18.0 22.8 23.5	- 26,3 24,4	18.1 19.9 28.4 31,3	24,9	16.5 17,2 21,2 23.0
	Ориентированные микро- напряжения кГ/ми ²	dis	10		1 1	(5 88 89	1 1	a 100 ℃
		dina	6	-13 -7 28 25	4 14	1.1 44 8	44 1	21 00 12
		d II	~	-13 -7 30	18 14	2 35 28	36 31	7-88
(and a second of	Предел текуче- сти ⁵ т кГ/мм ³			51,0 40,0	6 2,0 57, 0	37,0 33,5	50,0	50,5
	Схема деформа- ции наружного волокна		9	растяжение сжатие растяжение сжатие	растя кение с. атие растя кепие с. атие	растяжение сжатие растяжение сжатие	растяжение сжатие растяжение сжатие	растяжение сжатие растяжение сжатие
-	9 4 5			12	12	9 9	9 9	61 61
-	Степень деформа- ции наруж- ного волок- на, %		1 4	0,5	0,5	0'1	0	0 1,0
	Направле- ние вырезки		3	поперек направле- ния проката	вдоль направле- ния проката	поперек направле ания проката	вдоль направле- ния проката	поперек иаправле- ния
	Голщина листа, мм		2	10	10	60	50	20
	Материал			ПОХСНД	10ХСНД	охснд	охснд	10ХСНД

габл. 1	11		18,9	18,3 25,8	36,0	1	23,9 28,7
олжение т	10		7	79	01	1	11 4
Прод	6		ς,	700	4	1	sp0
	5 6 7 8		7	0 4 4	ì	1	5
			71,5	60,5		71,5	58,0
			растяжение сжатие	растяжение сжатие		растижение сжатие	растяжение сжатие
			15	15		15	15
	4		0	0,4		0	0,4
	2 3		поперек направле-	проката	вдоль	направле-	проката
			Ø	17	8		
	1	171914	447111		17F2AΦ		

рокого образцов на сжатой и растянутой сторонах. Это является свидетельством однородности пластической деформации по ширине образцов вне зависимости от напряженного состояния.

По высоте образца распределение ориентированных микронапряжений неоднородно (см. рис. 2) — максимальное значение они имеют на поверхности образца, а минимальное — в центре,

Рис. 1. Распределение орнентированных микронапряжений после правки по ширине образца для широкого (а) и узкого (б) образцов. Толщина образцов 20 мм. О — $\sigma_{11} \bigtriangleup - \sigma_{12} \Box - \sigma_{13}$ — растянутая сторона — $\sigma_{11} \bigtriangleup - \sigma_{12} = -\sigma_{13}$ — сжатая сторона

что согласуется с распределением пластической деформации при пластическом изгибе образцов. Отсутствует значительное различие между системами ориентированных микронапряжений для узкого $b/h \sim 2$) и широкого $(b/h \sim 6)$ образцов: для узких образцов

(одноосное напряженное состояние) $\sigma_{i1} \neq 0$, $\sigma_{i2} = \sigma_{i3} \neq 0$, знак σ_{i1} противоположен знаку внешней деформации, а знаки σ_{i2} и σ_{i3} совпадают. Для широких образцов (плоское напряженное состояние) $\sigma_{i1} \neq \sigma_{i2} \neq \sigma_{i3} \neq 0$, а их знак трудно связать со знаком внешней нагрузки. Таким образом, с увеличением отношения b/h наряду с изменением напряженного состояния образца изменяется и система ориентированных микронапряжений.

Рассматривая вопрос о взаимодействии ориентированных микронапряжений с впешними напряжениями при механических испытаниях образцов, трудно сделать вывод — влияют они на механические свойства или нет (см. табл. 1). Так, снижение предела текучести образцов после изгиба по сравнению с недеформированными для стали ІОХСНД можно связать с влиянием остаточных микронапряжений — совпадение знаков внешней нагрузки и ориентированных микронапряжений должно приводить к снижению внешнего напряжения, необходимого для начала течения металла, так как ориентированные микронапряжения подобны обычным напряжениям и поэтому будут алгебранчески складываться с внешними. Однако снижение предела текучести наблюдается и для стали 17Г2АФ, причем существенное, но знак и величина ориентированных микронапряжений не позволяет это снижение предела текучести объяснить их влиянием.

Для одноосного напряженного состояния дело обстоит несколько нначе: изменение предела текучести практически не наблюдается (см. табл. 1), что, по-видимому, можно объяснить тем, что ориентированные микронапряжения на сжатой и растянутой сторонах имеют практически одинаковые значения, но различные знаки и поэтому влияние на внешние напряжения, необходимое для начала текучести, практически отсутствует.

Таким образом, после пластического изгиба в образце возникает неоднородное поле ориентированных микронапряжений с компонентами σ_{i1}≠σ_{i2}= σ_{i3}≠0, причем распределение их коррелирует с распределением пластической деформации по сечению образца.

Существенное влияние на распределение ориентированных микронапряжений (их знак и величину) оказывает не только неоднородное распределение пластической деформации по сечению образца, но и напряженное состояние образца при деформировании.

ЛИТЕРАТУРА

1. Васильев Д. М. Некоторые рентгенографические методы изучения пластически деформированных металлов. — Успехи физических наук. 1961, т. 1 XXII, вып. 3, с. 503—558.

2. Фридман Я. Б. Механические свойства металлов. т. 2 Механические испытания. М., Машиностроение, 1974.

3. Васильев Д. М. О микронапряжениях, возникающих при пластическом деформировании. — Физика твердого тела. 1959, т. 1, вып. II. 40 4. Васъльев Д. М. О природе эффекта Баушингера. В кн.: Некоторые

проблемы прочности твердого тела. М.: Изд-во АН СССР, 1960. 5. Демина Л. И. и др. Лабораторные методы испытания топколистовых материалов при двухосном растяжении. — Заводская лаборатория. 1968, т. 34, вып. 1, с. 80-86.

6. Васильев Д. М. Методика рентгенографического исследования напря-жений. — Заводская лаборатория, 1965, т. 30, № 8.

7. Богоряцкий Ю. А. Рентгенография в физическом металловедении. М., Металлургиздат, 1961.

УДК 621.791.92:633.3-77

ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ ТРЕХФАЗНОЙ НАПЛАВКИ В РЕМОНТНОМ ПРОИЗВОДСТВЕ

И. Ф. ПЕДЧЕНКО, В. Ф. КАРПУСЕНКО

Процессы наплавки занимают важное место в сварочной технике при восстановлении (ремонте) первоначальных (необходимых) размеров и свойств изделий (деталей). При восстановлении (ремонте) наплавку выполняют примерно тем же материалом, из которого изготовлено изделие, однако такое решение не всегда целесообразно.

Иногда при восстановлении, и даже при изготовлении новых деталей, целесообразней получить на их поверхности металл, отличающийся от металла детали. В большинстве случаев условия эксплуатации поверхностных слоев значительно отличаются от условий эксплуатации всего остального материала деталей.

Так, например, если деталь должна определять общую прочность, которая зависит от свойств металла и его сечения, то поверхностные слон часто должны работать на абразивный и другие виды износов [3]. Условия работы могут усложняться повышенной температурой, эрознонно-коррозионным воздействием OKDVжающей среды и т. д.

Во многих случаях детали изготовляют целиком из металла, который обеспечивает и требования к эксплуатационной надежности работы его поверхностей. Однако это не всегда наилучшее и, как правило, не экономичное решение. Часто оказывается целесообразней все изделие изготовлять из более дешевого и достаточно работоспособного металла для конкретных условий эксплуатацин и только на поверхностях, работающих в особых условнях, иметь необходимый по толщине слой другого материала.

В большой мере этой возможностью располагает и ремонтное производство, имея дело с конкретными деталями и их поверхностями. Восстановление поверхностных размеров изношенных деталей осуществляют, применяя газопламенную, электродуговую и плазменную наплавки, напыление и другие способы, нанося расплавленный металл на поверхность детали, нагретую до оплавления