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An important characteristic of the grenewal process, and of great practical interest, is the grenewal equation, 

which represents the expected cumulative number of recurrent events as a function of time. The problem is that the 
grenewal equation does not have a closed form solution, unless the underlying event times are exponentially distrib-
uted. The Monte Carlo solution [10], although exhaustive, is computationally demanding. This paper offers a simple-to-
implement (in an Excel spreadsheet) approximate solution, when the underlying failuretime distribution is Weibull. 
The accuracy of the proposed solution is in the neighborhood of 2%, when compared to the respective Monte Carlo 
solution. Based on the proposed solution, we also consider an estimation procedure of the grenewal process parame-
ters. 
 

ACRONYMS 
CDF  cumulative distribution function; 
CIF  cumulative intensity function; 
ECIF  empirical cumulative intensity function; 
GPR  generalized renewal process; 
HPP   homogeneous Poison process; 
IFR  increasing failure rate; 
MC  Monte Carlo; 
NHPP  non-homogeneous Poison process; 
ORP  ordinary renewal process; 
PDF  probability density function; 
SE  standard error; 
SS  sum of squares. 
 

NOTATION 
Vn, Sn – age of the system after and before the nth re-
pair, respectively; 
q  – restoration (or repair effectiveness) factor; 
t – time; 
W(t) – grenewal function denoting the expected cu-
mulative number of events (failures); 
f(t) – probability density function;  
F(t) – cumulative distribution function; 
 – respectively, the scale and the shape parameters 
of Weibull distribution; 
  – Gamma function; 
  – the mean and the standard deviation of the fail-
ure time distribution; 
N – number of simulations; 
PL(t), QM(t) – polynomials with order L and M, respectively; 
a,b, c, , A, B, C, D – numerical constants. 

 
INTRODUCTION. In repairable system reliability 

analysis, one could consider four states, to which a system 
can be repaired upon a failure. These are: 1) "good-as-
new" 2) "same-as-old", 3) "better-than-old-but-worse-
than-new", 4) "worse-than-old". If upon a failure, a re-
pairable system is restored to as "good-as-new" condition 
and the time between system failures can be treated as an 
independent and identically distributed (IID) random 
variable, then the failure occurrence can be modeled by 
the Ordinary Renewal Process (ORP). If upon a failure 
the system is restored to the "same-as-old" condition, then 

the appropriate model to describe the failure occurrence 
can be the Non-Homogeneous Poisson Process (NHPP). 
The time between consecutive failures, in this case, is not 
an IID random variable. A more general model is the so-
called Generalized Renewal Process (GRP), which treats 
ORP and NHPP as special cases – see Figure 1.  

The GRP or grenewal process, originally introduced 
by Kijima and Sumita [13,14], has gained an increasing 
popularity in modeling and analysis of recurrent events, 
specifically in reliability applications [5, 8, 11, 20]. The 
GRP is introduced using the notion of virtual age: 

Vn = qSn , 

where Vn and Sn is the system's age after and before 
the n-th repair, respectively, and q is the restoration (or 
repair effectiveness) factor. 

 

System’s Age (Time)0 failure
time

1) Good-as-New (ORP)
2) Same-as-Old (NHPP)

3) Better-than-Old-but 
Worse than-New (GRP)

4) Worse-than-Old (GRP)

 
Figur  1 - Repair Assumptions & Respective Point 

Process Models 
 

It is clear that for q = 0, the age of the system after 
the repair is "re-set" to zero, which corresponds to the 
ORP. With q = 1, the system is restored to the "same-as-
old" condition, which is the NHPP. The case of 0 < q < 1 
corresponds to the intermediate "better-than-old-but-
worse-than-new" repair assumption.Finally, with q > 1, 
the virtual age is An > Sn , so that the repair damages 
(ages) the system to a higher degree than it was just be-
fore the respective failure, which corresponds to the 
"worse-than-old" repair assumption. As such, all four 
considered cases of q can be modeled by the GRP. 

Under the GRP, the expected number of events (fail-
ures) in (0, t] is given by a solution of the so-called 
grenewal function [14]: 
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and F(t) and f(t) are the cumulative distribution function 
(CDF) and probability density function (PDF) of the un-
derlying failure time distribution. Note that g(t|0) = f(t). 

The closed form solution of the grenewal equation 
does not exist, and even numerical solutions are difficult 
to obtain, since each equation contains a recurrent infinite 
system [6]. The Monte Carlo (MC) solution discussed by 
Kaminskiy and Krivtsov [10], although exhaustive, is 
computationally demanding. The present paper offers a 
much simpler approximate solution, which can be imple-
mented in an Excel spreadsheet. Its accuracy approaches 
the MC solution for all practical purposes. 

 
TWO-POINT PADE APPROXIMANTS FOR 

ORDINARY RENEWAL EQUATION. In the first 
step, we consider ordinary renewal process, which is used 
to model the situation with restoration to "good-as-new" 
condition (the so-called perfect repair assumption). This 
process corresponds to a particular case of the grenewal 
process, when restoration factor, . The time-

depended renewal function, , gives the expected 

numbers of replacements and satisfies the integral equa-
tion  
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where  is the CDF of the underlying failure time 

distribution. In this paper, we consider the most popular 
Weibull distribution with the CDF expressed by 

)t(F
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in the time interval . The scale and shape parameters 
are restricted to the range 

0t
0  and 0 , respectively. 

A solution of Equation (1) was obtained in [18] as a 
series expansion 
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Coefficients of the series are defined by a simple recur-
sive 

procedure  
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The partial sum of the series (3) with several terms 
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gives a good approximation of the solution for small val-
ues of time and can be considered an asymptotic represen-

tation of the solution when 0t . If 1t , the con-

vergence of the series is very slow (especially if 1 ) 
and additional enhancement of the solution is required. 
For this reason, many authors considered another well 
known asymptotic representation [2] for large values of t : 
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where  ,   are the mean and the standard deviation of 

the underlying failure time distribution, respectively. For 
the Weibull distribution, we have:  
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The asymptotic expansions (5) and (6) complement 
each other, but they are not accurate enough for the entire 
range of t from zero to infinity. For that reason, solution 
(5) was represented as a modified Padé function in [7]. 
The [L/M] Padé function [1] is defined as a rational func-
tion, where numerator  tPL  and denominator  tQM  are 

polynomials with order L and M, respectively. The Padé 
functions were used in [4] to obtain a better solution in 
time interval  for the renewal process with trun-

cated Gaussian underlying distribution function. Value 
 was defined as a switch-over point from 

],0[ 0t

0t Padé function 

to asymptotic function (6) under the condition that the 
obtained spline is close to the exact solution. This method 
was extended in [7] to the case when the underlying dis-
tribution function is Weibull. In addition, modified Padé 
functions [7] are used to construct the uniform interpolant 
joining (5) and the first term of asymptotic (6). The abso-
lute relative error in the latter case reaches 5%, if 5  
and increases with the increase of shape parameter  . In 
both cases, some additional significant calculations are 
required to obtain coefficients of Padé function. 

We suggest using two-point Padé functions in the 
form  
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This simple function has the same asymptotic expansion 
as (5) when . To satisfy asymptotic representation 
(6) we have to put 

0t
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To make sure that the rational function (7) does not have 
poles, we selected number  such that  if 

 and 

n 0na

022   0na  if . Under this 

condition,  and the denominator of the rational 
function is not equal to 0 for any values of time. The ac-
curacy of (7) depends on . We defined the optimal 
value 

02  2
0B

17
n

n  if 1  and n f 8  i 1 . In Figure 2, the 
result of the calculation is represented for the case when 

5 . The solid curve corresponds to the Monte Carlo 
solution, while the dashed curves represent asymptotic 
formulas (5) and (6).  



 
Figur 2 - CIF of ordinary renewal process ( 5 ). 

 
The accuracy of approximation (7) with respect to the 

"exact" Monte Carlo solution is shown in Table 1. The 
results of the proposed two-point Pade approximation (7) 
and the respective Monte Carlo method (with number of 

trials ) is represented at corresponding time val-
ues (under 

710N
 1 ) when the maximum error was reached. 

The last row of the table shows the standard error (SE) of 
the Monte Carlo solution. 

 
Table 1. The renewal function using two-point Pade 

approximation (7) compared to Monte Carlo solution 
under various values of  and with  =1 

 
Shape parameter,  3 4 5 6 7 

Two-point Pade 1,3453 1,0703 1,2630 1,2396 0,7907
Monte Carlo 1,3597 1,1087 1,2136 1,1590 0,9755
Maximum error 1% 3,5% 4% 7% 19% 
Time at max error 1,6 1,4 1,6 1,6 1,2 
Monte Carlo SE 0,00074 0,00056 0,00062 0,00058 0,00045

 
Approximation (7) is accurate enough for most prac-

tical cases, if shape parameter 5 . For greater values 
of  , the renewal function is oscillating [3] and the sim-
ple formula cannot be derived in a general case. More 
accurate (but also more complicated) methods can be ap-
plied, e.g., [7], [3]. A simple approximation for the re-
newal function with the underlying increasing failure rate 
(IFR) distribution ( 1 ) was obtained in [9] for a rea-
sonably practical time interval.  

We improved (7) in interval 53    by adding an 
additional term C  to the numerator of (7): 
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All coefficients in this formula were selected to mini-
mize the maximum relative error with respect to the 
Monte Carlo solution. The maximum error decreases to 
2,7% in interval 53    after this adjustment. 

 
APPROXIMATE CUMULATIVE INTENSITY 

FUNCTION OF G  RENEWAL PROCESS. In gen-
eral, the problem of approximation of the cumulative in-
tensity function (CIF) of the g-renewal process is much 
more complicated. Because of the additional restoration 
factor q we have to consider a function of 3 variables 

),,( qtF  . The scale parameter can be eliminated by ap-

propriate substitution of the time variable. Vaurio ob-
tained an approximate solution of the g-renewal equation 
in [19]. However, our Monte Carlo simulations revealed a 
considerable limitation of his solution: it is accurate, if 
virtual time qt is small or large, but it yields a significant 
error when . Our approach is based on the follow-

ing properties of the CIF. 

1~qt

3.1. Restoration factor q  
We assume to have an already reasonably accurate 

solution  0 ,W t  , if q=0, that is the case of the ORP. If 

1q  , we have the Nonhomogeneous Poisson Process the 

with exact solution  

 1( , )W t t   (9) 

Our attempt is to construct an approximate solution 
in interval 10  q . We suggest an heuristic formula for 

the CIF approximation: 

  0 1 0( , , ) ( , ) ( , ) ( , )W t q W t q W t W t       (10) 

For any 0  we have included two previous cases when 

0q  and q=1. To construct function γ we first consider 

general properties of the CIF. 
3.2. Time variable t 

The CIF function has an asymptotic solution  

  , , 0W t q t if t    (11) 

for any   and q. Formula (10) satisfies this asymptotic 
because 1 0( , ) ( , )W tW t    if . 0t

3.3. Shape parameter   
Formula (10) is the exact solution for 1  with any 

values of q and t, because it corresponds to the exponen-
tial distribution function and W t  in this case. 

In addition: 
1( ) W 0 ( )t

 0( ) ( ) 0W t W t if    (12) 

for any values of q and t. To satisfy this last property we 
have to put 0  if 0 . 

3.4 Defining function γ  
To interpolate the CIF, we use Padé approximant for 

γ in the following form 
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assuming that γ depends only on shape parameter  . We 
will find limitations of this assumption later on. 

Property (12) is included in (13). We can define the 
coefficients of rational function (13) if solution is known 
at some point. For each i-th point, we can use (10). Solv-
ing it for γ, we obtain the following: 
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and, finally, for the coefficients of Padé function, we have 
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We selected only 3 "critical" points, which are shown 
in the Table 2. All of them are from the range, which is 
not covered by above mentioned properties (9-12).  
 

Table 2. Points for approximation of function γ 
 

i t  q    F  1F  0F  i  

1 5 0,5 0,5 2,450 2,236 3,910 0,1973
2 2 0,5 2 2,862 4 1,883 1,112 
3 2 0,5 5 4,318 32 1,703 3,534 

 
The result of solving (15) for these points is the following 

  (16) 0,3096; 0,2846; 0,2909a b c  

The graph of (15) as a function of  is depicted in 
Figure 3.  

 
Figur 3 - Function   depending on shape parameter  . 

 
Thus, (8), (9), (10), (13) along with (16) provide the 

approximate analytical solution for CIF of the grenewal 
process. We validated this approximation in interval 

, 0 1q  ,1 0,5 5 

10

2

 and  against the Monte 

Carlo solution with trials. The maximum relative 
error of the approximation is 2,6% in interval 

5CIF
7

0,75  
0,75

. The error increases significantly when 
   or 2  , because the assumption that   in 

(13) depends only on   is valid only if 0,75 2  .  
We adjusted (13) to the case 2  by including de-

pendence   on all three variables qt ,, . We use poly-

nomial function in the following form: 

     0 0 0 02 0.5G A B t q C D         0t  ,(17) 

where  is obtained from the condition that the 

value of 
0 1,112G 
  obtained by (17) coincides with that obtained 

by (13) if 2 . To obtain values for coefficients  

and , we consider two points for 
0A

0B 4  from Table 2. 

 

Table 2. Points for approximation of function  if 

52    
 

i t  q    F  1F  0F    

1 1,4 0,5 4 1,647 3,842 1,108 2,344 
2 2 0,5 4 3,958 16 1,742 2,6855 
 

Using these points, we obtain 

0 00,2176, 0,2846A B 

0D

52

. To identify coefficients  

and , we used Monte Carlo results in interval 
0C

   and minimized the maximum relative error of 
approximation (17), which yielded 

0 0 0,09, 0,48C D   . 

We used similar approach in the case when 75.0  
by considering the following polynomial approximation 
of CIF: 

    1 1 1 10,75 0,5G A B t q C        1D t   ,  (18) 

where 1 0,3220G   is obtained from the condition that 

the value of   obtained by (18) coincides with that ob-

tained by (13) if 75.0 . To obtain values for coeffi-
cients  and , we consider 2 points for 1A 1B 0,5   as 

shown in Table 3. 
 
Table 3. Points for approximation of function   if 

0,75   
 

i t  q    F  1F  0F    

1 2 0,5 0,5 1,5068 1,4142 2,0491 0,2274
2 15 0,5 0,5 4,4196 3,8729 9,4142 0,1498

 

Using these points, we obtain 

1 1- 0,3302, - 0,02391A B 

1D

0,5 0,75

. To identify coefficients  

and , we used Monte Carlo results in interval 
1C

 

0,5 5

 and minimized the maximum relative 
error of approximation (18), which yielded C1=0,49, D1= 
–0,009. It is important to note that, ultimately, we joined 
the above three approximation (15, 17, 18) in interval 

   and obtained a continuous function as a re-
sult.  

To calculate the maximum relative error of the ob-
tained final approximation (15-18) with respect to the MC 
solution, we selected 9 points from interval 0,5 5  , 
12 points from interval 0 1q ,1   and 20 points for the 

time variable under condition that . In total, 2160 
points were used. The results are summarized in Table 4. 
As it follows from the table, the maximum error is 2,6% 
in the most practically important intervals 

5CIF

0,5 3  , 1.10  q  and . The upper limit for 

 interval can be extended to 5 with the maximum error 
of 4,3%. 

5CIF

 
Table 4. Maximum relative error of the grenewal 

function with respect to the MC solution for various val-
ues of Weibull shape parameter 

 
  5 4 3 2 0,8 0,75 0,7 0,6 0,5 
Max error, % 4,3 3,7 2,5 1,3 1,8 2,6 2,0 1,8 1,9 



 
GRP ESTIMATION USING THE APPROXI-

MATE CIF SOLUTION 
4.1. Estimation procedure 
The obtained approximations allow to efficiently 

solve the "reverse" problem: the estimation of grenewal 
process parameters , , q  . Kaminskiy & Krivtsov [10] 

used the MC-based nonlinear least squares estimation and 
Yañez, et. al [20] followed by Mettas & Zhao [16] used 
the maximum likelihood estimation of the grenewal 
process. Our approach is based on the obtained approxi-
mations of CIF and an improved strategy of finding the 
minimum of the sum of residual squares. 

At first, we set q=1 (under which, CIF is numerically 
equal to the cumulative hazard function of the underlying 
Weibull distribution – see [12], and find initial estimates 
of the shape and the scale parameters using the hazard 
paper approach [17]. Then, we find the minimum of the 
sum of residual squares with respect to the shape parame-

ter followed by the scale parameter. The process is re-
peated iteratively for each selected value of q in interval 
[0,1] until the desired accuracy for all parameters is 
reached. When  is changed in the loop, we use the esti-

mates of the shape and the scale parameters obtained at 
the preceding step as the initial values.  

q

 
4.2 Simulated Data Example 
To test the accuracy of the described estimation pro-

cedure, we simulated the CIF of the grenewal process 
with the following parameters , 0,5q  2,0   and 

10/1   with 107 trials  see Table 5. 
The fragment of calculation of residual sum of 

squares (SS) is represented in Table 6. There is a clear 
minimum of the residual sum of squares (Set 3), which is 
reached when the grenewal process parameters are close 
to exact values 0,5q  , 1,9999   and 1/ 9,9707  . 

 
Table 5. Input data generated by Monte Carlo solution 

 

Time 1 2 4 6 8 10 12 14 
CIF 0,009973 0,03968 0,1559 0,3405 0,5831 0,8732 1,2032 1,5686 
MC SE 5,5E-5 1,1E-4 2,3E-4 3,6E-4 5,0E-4 6,8E-4 8,9E-4 1,1E-3 

 
Table 6. Estimates of grenewal process parameters Table 7. CIF of the grenewal process based on real 

data based on data in Table5 
  

 Set 1 Set 2 Set 3 Set 4 Set 5 
q  0,46 0,48 0,50 0,52 0,54 

/1  9,873  9,921  9,971  10,02  10,06  

  1,9999 1,9999 1,9999 1,987 1,973 

SS 1,26E-
04  

3,55E-
05 

4,69E-06 9,08E-
06 

1,78E-
05 

Time 3 6 9 12 15 18 21 24 27 

ECIF 0,03 0,09 0,14 0,24 0,38 0,54 0,70 0,90 1,17

 

 
We would like to emphasize that the running time is 

extremely short. It took only 0,8 sec to calculate the result 
with good accuracy on the computer with 2,51 GHz proc-
essor and 6,00 GB of RAM. For calculation of Gamma 
faction in the above formula we used Lanczos 

approximation [15], whose relative error is . 10102 
4.3 Real Data Example 
This example shows the practical application of the 

proposed grenewal process estimation. We use the Em-
pirical Cumulative Intensity Function (ECIF) estimated 
from the automotive warranty data [11]  see Table 7. 

In contrast to the previous example, we do not ob-
serve a clear minimum of the residual sum of squares – 

see Table 8. It fluctuates around in interval 3102 
0,8 1q  . The residual SS shown in the last row of 
Table 8 illustrates that identified combinations (sets) of 
GRP parameters fit the data almost equally well. This 
might be explained by three factors: a) a relatively high 
random variability in the data causing the departure of the 
ECIF from the ideal CIF of the grenewal process, b) the 
relatively low value of the ECIF (of 1.17), implying a 
relatively low number of recurrent events, and, as a result, 
the low accuracy in the estimation of the restoration pa-
rameter q, and c) a potential inaccuracy of the proposed 
approximate solution used as the basis of the estimation 
procedure. 

Table 8. Estimates of grenewal process parameters based on data in Table 7 
 

 Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 

q  1,0 0,96  0,92  0,88  0,84  0,80  

/1  25,07 24,95 24,82 24,68 24,53 24,39 

  1,907 1,917 1,927 1,939 1,95 1,963 

SS 1,79E-03  1,84E-03  1,88E-03  1,94E-03  2,00E-03  2,06E-03  

 



To verify the influence of the third factor above we 
validated results using Monte Carlo method. We calcu-
lated CIF for two most "diverse" sets of grenewal proc-
ess parameters from Table 8: Set 1 and Set 6. As it fol-

lows from Table 9, there is a small deference between the 
CIF values obtained by Monte Carlo method and both of 
them are good approximations of ECIF. 

 
Table 9. Comparison with Monte Carlo method (107 trials) 

 

Time 3 6 9 12 15 18 21 24 27 

ECIF 0,03 0,09 0,14 0,24 0,38 0,54 0,70 0,90 1,17 

CIF (Set1) 0,0174 0,0653 0,142 0,245 0,375 0,532 0,713 0,920 1,15 

SE (Set 1) 7,6E-5 1,5E-4 2,3E-4 3,2E-4 4,2E-4 5,4E-4 6,7E-4 8,3E-4 1,0E-3 

CIF (Set 6) 0,0163 0,0633 0,140 0,245 0,375 0,534 0,716 0,922 1,15 

SE (Set 6) 7,3E-5 1,5E-4 2,3E-4 3,1E-4 4,2E-4 5,3E-4 6,6E-4 8,1E-4 9,9E-4 

 
For this real data set, we also tested the accuracy and 

the computational efficiency of the estimation procedure 
based on the proposed approximate solution of grenewal 
equation versus that based on the MC solution. The MC 
method results are shown in Table 10. They are very close 
to those represented in the Table 8. However, the running 

time was significantly higher: 25 minutes vs. 0.8 sec. If 
the number of MC trials is decreased to 105, the process 
of finding the minimum of the residual sum of squares 
diverges because of the lack of accuracy of the MC 
method. The estimation procedure based on the proposed 
approximate solution is free from this drawback. 

 
Table 10. Estimates of grenewal process parameters  

based on data in Table 7 using MC method 
 

 Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 

q  1,0 0,96  0,92  0,88  0,84  0,80  

/1  25,06 24,96 24,84 24,67 24,57 24,41 

  1,908 1,913 1,921 1,936 1,946 1,960 

SS 1,77E-03  1,82E-03  1,87E-03  1,92E-03  1,99E-03  2,07E-03  

 
 

CONCLUSIONS. In this paper, we proposed an ap-
proximate solution to the grenewal equation for the case 
of the underlying Weibull distribution. The proposed so-
lution is simple to implement, and it has a practically 
comparable accuracy as the respective Monte Carlo solu-
tion.  

We also used the proposed approximate solution as a 
basis for the non-linear least squares estimation of the 
GRP parameters. Compared to the MC-based estimation, 
the proposed estimation is much more computationally 
efficient and is almost similarly accurate.  

Finally, we observed that for real-life data sets 
(which are subject to statistical noise) one can find multi-
ple sets of estimates of the underlying Weibull parameters 

and the restoration factor that yield practically equal fits 
to the ECIF. This is to say that in the absence of prior 
information, it would be difficult to explain whether the 
difference between two ECIF's is caused by the difference 
on the underlying distribution parameters or in the resto-
ration factors. 
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ПРИБЛИЗИТЕЛЬНОЕ РЕШЕНИЕ УРАВНЕНИЯ 
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Кривцов В. В., Евкин A. Ю. 

 
Важной характеристикой g-восстановительного 

процесса, также представляющей существенный 
практический интерес, является уравнение g-
восстановления, которое характеризует мат-
ожидание суммарного числa повторных событий в 
функции времени. Проблема состоит в том, что 
уравнение g-восстановления не имеет решения в 
замкнутом виде, кроме случая экспоненциального ба-
зового распределения. Решение Монте-Карло [10] 
хотя и исчерпывающее, но в вычислительном плане 
достаточно емкое. В данной статье рассматрива-
ется сравнительно простое в реализации (в Excel) 
приблизительное решение, для случая Вейбулловского 
базового распределения. Точность предложенного 
решения не отличается от соответствующего ре-
шения Монте-Карло более чем на 2%. Основываясь на 
предложенном решении, мы также рассмотрели 
процедуру оценки параметров уравнения g-
восстановления. 
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ПРИБЛИЗНЕ РОЗВ'ЯЗАННЯ РІВНЯННЯ 
G-ВІДНОВЛЕННЯ З БАЗОВИМ 

РОЗПОДІЛОМ ВЕЙБУЛА 
 

Кривцов В. В., Євкін О. Ю. 
 

Важливою характеристикою g-відновного проце-
су, що представляє істотний практичний інтерес є 
рівняння g-відновлення, яке характеризує мат-
очікування сумарного числа подій, що повторюються 
у функції часу. Проблема полягає в тому, що у рівнян-
ня g-відновлення немає рішення у замкненому виді, за 
винятком експоненціального базового розподілу. Рі-
шення Монте-Карло [10] хоча і є вичерпним, але в 
обчислювальному плані досить ємне. В статті роз-
глядається порівняно просте в реалізації (в Excel) 
приблизне рішення, для випадку базового розподілення 
Вейбула. Точність запропонованого рішення не відріз-
няється від відповідного рішення Монте-Карло більш 
ніж на 2%. Ґрунтуючись на запропонованому рішенні, 
ми також розглянули процедуру оцінки параметрів 
рівняння g-відновлення. 


