ОБОСНОВАНИЕ ПАРАМЕТРОВ ПРОЦЕССА ВЫСЕВА СЕМЯН СЕЯЛКОЙ

Морозов И.В., д.т.н., проф., Ящук Д.А., асс.

Харьковский национальный технический университет сельского хозяйства имени Петра Василенка

В статье представлен анализ обоснований параметров процесса высева семян в сеялках и влияние их на качество посева

Постановка проблемы. Качество посева сельскохозяйственных культур оценивается равномерностью распределения семян в почве в соответствии с агротребованиями.

Равномерность распределения семян зависит от упорядоченности зернового потока, который формируется высевающим аппаратом и исходит из него.

На проблему движения семян в сошнике многие исследователи обращали внимание, высказывали идею уравнять скорости семян и сеялки (акад. М.В. Сабликов [1], Л.С. Зенин [2], С.И. Шмат [3]) и др., но технических решений для реализации этой идеи в то время, как отмечали авторы, не существовало.

Анализ исследований. Для улучшения равномерности распределения семян в почве анкерными сошниками проф. М.Х. Пигулевский предложил поставить в сошнике плоскую отражательную пластину, понижающуюся по ходу движения сошника.

Техническое решение проф. М.Х. Пигулевского в свое время сыграло положительную роль в улучшении качества посева, благодаря чему семена были направлены к носку сошника с целью расположения семян на дне борозды. Но не все семена попадали на дно борозды, а часть их располагалась на подсошниковой наклонной поверхности и оставались заделанными на меньшую глубину.

Техническое решение М.Х. Пигулевского можно применять на сошниках, не имеющих опорной плоскости [4].

Исследования агрофизиков и ученых сельскохозяйственной науки позволили усовершенствовать агротребования к посевным машинам. Было добавлено формирование семенного слоя почвы с оптимальной плотностью. А это могут выполнять сошники, опирающиеся на плоскость. Значит, направление зернового потока к носку сошника утратило смысл. Поэтому, исследоватебли, в том числе и мы [5-7] начали искать пути улучшения технологического процесса в этом направлении.

Целью статьи является обоснование параметров направителей для семян в сеялках.

Улучшение равномерности распределения семян реализуется различными методами. Один из сравнительно новых и перспективных является введение в

конструкцию сошников направляющих элементов для семян (В.Е.Комаристов [8], Н.И.Любушко [9-12], О.В. Пущинская [13], В.П.Голованов [14] В.А.Кириченко [15] и др.). Это создает благоприятные условия полета семян и в особенности при выходе из сошника за счет уравнивания скоростей горизонтальной составляющей семян и агрегата. В этом случае семя обладает относительно почвы только вертикальной составляющей абсолютной скорости, т.е., это приближение к идеальным условиям.

В настоящей работе, решая задачи, по обоснованию параметров направляющих элементов для семян руководствовались методологией академиков П.М.Василенко [16] и П.М.Заики [17].

Нами решен ряд задач по обоснованию параметров движения частиц по различным поверхностям, которые являются направляющими элементами для семян.

Изложение основного материала. Для решения задачи движения частицы по наклонной плоскости рассмотрено движение шарообразной частицы по наклонной плоскости с определенными условиями [18].

В результате решения этой задачи получены уравнения, позволяющие определить такие характеристики движения частицы как ее координаты и составляющие скорости, которые могут быть необходимыми при определении параметров направляющих элементов сошников для различных семян, отличающихся физико-механическими свойствами, высеваемых при различных режимах работы посевных агрегатов.

Для решения задачи движения частицы по дуге окружности рассмотрено качение шара радиуса a по дуге окружности радиуса R под действием силы тяжести без трения и скольжения [19].

Выбирая надлежащим образом величину R, можно получить необходимое значение скорости v_{xc} , которую можно использовать для расчета параметров направляющих элементов для семян в сошниках с целью получения нужного соотношения скоростей зерна и сеялочного агрегата с учетом высева семян с различными физико-механическими свойствами.

Решая задачу движения частицы по дуге циклоиды, нами рассмотрена шарообразная частица радиуса a, массой m движется по дуге циклоиды без трения и скольжения. Выбирали систему координат таким образом, чтобы ось x лежала в горизонтальной плоскости, а ось y — в вертикальной [20].

По полученным выражениям были построены графики, где представлены зависимости составляющих скорости частицы от радиуса кривизны поверхности и времени ее движения, которые позволяют выбрать необходимую составляющую скорости частицы с учетом параметров сошника и режима работы агрегата.

В результате решения данной задачи найдены координаты частицы, абсолютная ее скорость и ее составляющие, которые могут быть использованы при обосновании параметров направляющих элементов для семян в сошниках.

Для решения задачи движения частицы по плоскости под действием силы тяжести с учетом сопротивления воздуха и трения рассмотрено движение частицы массой m по плоскости, наклоненной под углом a к горизонтальной

оси x под действием силы тяжести с учетом сопротивления воздуха и трения между частицей и поверхностью [21].

По уравнениям построены графики зависимости составляющих скорости частицы от угла наклона плоскости и угла внешнего трения частицы по плоскости. На графиках показано, что угол наклона плоскости существенно влияет на составляющие скорости, а коэффициент внешнего трения почти не оказывает влияния на эти показатели. Откуда следует вывод, что наклонная плоскость может быть использована в качестве направителей в сошниках для большинства семян зерновых культур.

Полученные формулы дают возможность определить координаты частицы, которая движется по плоскости с учетом сопротивления воздуха и трения, а также ее скорости и ускорения, которые являются характеристиками движения частицы по направителям семян в сошниках.

Использование этих характеристик дает возможность при конструировании новых и усовершенствовании существующих рабочих органов сеялок улучшить качество работы, что положительно повлияет на урожайность сельскохозяйственных культур.

Движение частицы под действием гравитационного поля. В данной задаче, где рассмотрено в общем виде движение частицы в гравитационном поле, по поверхности произвольного профиля с учетом сил трения, сопротивления среды и результат ее решения применяется для конкретного случая – наклонной плоскости [22].

Полученные расчеты дают возможность выбрать параметры наклонной плоскости, такие как угол наклона, длину плоскости и ее шероховатость (и тем самым коэффициент трения) в зависимости от требований, предъявляемых к величине и направлению скорости частицы.

Выводы. При решении задач движения частиц по направляющим элементам определены следующие параметры:

- при движении частицы по наклонной плоскости без трения и скольжения: горизонтальная составляющая ускорения частицы, уравнения ее движения и составляющие ее скорости;
- при движении частицы по дуге окружности: координаты частицы, скорость частицы и ее составляющие;
- при движении частицы по дуге циклоиды: уравнения движения частицы, скорость и ее составляющие; ускорбение и его составляющие;
- при движении частицы по плоскости под действием силы тяжести с учетом сопротивления воздуха и трения между трущимися поверхностями: уравнения движения частицы, скорости и ее составляющих; ускорения;
- при движении частицы под действием гравитационного поля: уравнение горизонтальной составляющей движения, скорость частицы и ее горизонтальной составляющей, ускорение частицы и его горизонтальной составляющей, значения вертикальных составляющих движения, скорости и ускорения.

Полученные параметры движения частиц по различным поверхностям позволили создать целый ряд направляющих элементов для семян высеваемых

культур с различными физико-механическими свойствами и нормами высева, с изменяющимися режимами работы посевных агрегатов. Это целенаправленно формирует зерновой поток, направляет его в нужном направлении и с определенной скоростью. Уравнивание скоростей семян и агрегата обеспечивает равномерность распределения семян по площади и глубине, что способствует повышению урожая высеваемых культур.

Список использованных источников

- 1. Сабликов М.В. Сельскохозяйственные машины. //Комплексная механизация хлопководства. Ташкент. 1950. 76с.
- 2. Зенин Л.С. Исследование пневматического высевающего аппарата точного высева. Автореф. дис. канд. техн. наук: 05.20.01 Алма-Ата, 1962. c.23.
- 3. Шмат С.И. Исследование аппаратов точного высева семян сахарной свеклы на повышенных скоростях. Автореф. дис. канд. техн. наук: 05.20.01 Воронеж, 1970. 24с.
- 4. Пигулевский М.Х. К анализу высева зерна рядовой сеялкой. Изд-во отд. Машиноведения ГИСа, т. X, вып. 3-4, 1918. c.33-39.
- 5. Семенов А.Н., Морозов И.В. Исследования анкерного сошника с прямым углом вхождения в почву // Сельскохозяйственные машины. Сб. научн. тр. МИИСП, вып. 1, ч. П, Том. X1, М. 1974. с.43-47.
- 6. Морозов И.В., Слоновский Н.В. К теории движения частиц по криволинейным поверхностям, применительно к сельскохозяйственной технике // Загальнодержавний міжвідомчій науково-технічний зб. Вип. 28. Кіровоград, 1999. с.181-189.
- 7. Морозов И.В., Слоновский Н.В. О движении псевдосжиженной среды по направляющей поверхности // Вісник ХДТУСГ. Вип. 9. Харків, 2002. с. 137-146.
- 8. Комаристов В.Е., Косинов М.М, Маломуж Г.И. и др. Влияние поступательной скорости зерновой сеялки на качество посева. Конструирование и технология производства сельскохозяйственных машин. Киев, 1974. с. 30-35.
- 9. Любушко Н,И. Тенденция развития конструкции зерновых сеялок: Обзор. М.: ЦНИИТЭИ тракторсельмаш. Серия «Сельскохозяйственные машины». 1975. 42 с.
- 10. Любушко Н.И. Исследование рабочих органов и усовершенствование конструкций зерновых сеялок для посева на повышенных скоростях // Материалы HTC/BИСХОМ. 1964. Вып. 16. С. 188-200.
- 11. Любушко Н.И., Лебедева Ж.И., Шульженко Б.А., Новиченко Я.З. Испытания экспериментальных дисковых сошников зерновых сеялок на повышенных скоростях // Тр. ВИСХОМ. 1973. Вып. 75. С. 124-128.
- 12. Любушко Н.И. Результаты опытно-конструкторских работ по созданию зерновых сеялок для посева на скоростях 9-15 км/ч Тр. ВИСХОМ. 1967. Вып. 51. С. 24-41.

- 13. Пущинская О.В. Теоретическое обоснование формы направителя семян дискового сошника зерновой сеялки // Исследование и разработка высокопроизводительных методов почвообрабатывающих и посевных машин. М., 1982 с. 17-21.
- 14. Голованов В.П. Движение семян от высевающего аппарата до дна борозды в однозерновых сеялках // Тематический сборник ??? ун-та, 1973. №96. С. 16-26.
- 15. Кириченко В.А., Трофимченко Ю.И., Морозов И.В. и др.. Исследование дисковых сошников с отражателями // Межвузовский сб. научн. тр. УСХА. К., 1990. с. 17-19.
- 16. Василенко П.М. Элементы методики математической обработки результатов экспериментальных исследований. М. 1958. 88 с.
- 17. Заика П.М. Избранные задачи земледельческой механики. Киев. Издательство УСХА, 1992. 507 с.
- 18. Морозов И.В., Власенко В.Г., Олумуйива И.Ф. и др. К обоснованию параметров отражателя семян в сошнике. Деп. В ТБ Украины 6.07.95, № 1715 Ук. 95.
- 19. Морозов И.В., Власенко В.Г., Олумуйи м ива И.Ф. и др. Некоторые теоретические предпосылки к обоснованию параметров направителей семян в сошнике. Деп. В ГНТБ Украины 6.07.95, №1714 Ук 95.
- 20. Морозов И.В., Власенко В.Г., Мустапха К.А. и др. К обоснованию параметров направителя семян в сошнике. Деп. В ТБ Украины 6.07.95, №1713 Ук 95.
- 21. Морозов И.В., Власенко В.Г., Доан Дик Винь. Визначення характеристик руху насіння по площині // Вісник ХДТУСГ, вип.. Харків, 2000. с. 213-218.
- 22. Морозов И.В., Власенко В.Г., Доан Дик Винь. Обоснование параметров движения частицы под действием гравитационного поля. // Механізація сільськогосподарського виробництва. Зб. Наукових праць Том 1X. Київ, 2000. с. 107-112.

Анотація

ОБҐРУНТУВАННЯ ПАРАМЕТРІВ ПРОЦЕСУ ВИСІВУ НАСІННЯ СІВАЛКОЮ

Морозов І.В., Ящук Д.А.

У статті представлено аналіз обгрунтувань параметрів процесу висіву насіння в сівалках і вплив їх на якість посіву.

Abstract

JUSTIFICATION PROCESS PARAMETERS SEEDING SEEDER

I. Morozov, D. Yashchuk

The paper presents an analysis of studies of process parameters seeding in drills and their effect on the quality of crops.