Розробка математичної моделі руху прикочуючого котка вібраційноосциляторноїдії для просапної сівалки

В.С. Дудка. аспірант.

(Таврійський державний агротехнологічний університет)

В роботі приведений розрахунок математичної моделі руху прикочуючого котка вібраційно-осциляторної дії для просапної сівалки.

Постановка проблемі. Ущільнення ґрунту є важливим агрофізичним показником, але для оптимального ущільнення треба правильно вибрати конструкцію котка. Для більшості сільськогосподарських культур оптимальні показники щільності ґрунту знаходяться в межах 1,1-1,3 г/см3.

i Аналіз останніх лослілжень публікацій. Дані багатьох експериментальних досліджень показують, що зменшення або, особливо, збільшення щільності ґрунту, в порівнянні з оптимальною на 0,1...0,3 г/см3 призводить до зниження урожаю на 20-40% [1, 2]. Оптимальна щільність сприяє більш швидкій і дружній появі сходів (раніше на 2-3 дні), кращому розвитку кореневої системи і наростанню вегетативної маси культур, що в кінцевому результаті сприяє отриманню більш високих врожаїв. Рослини негативно реагують на надмірне розпушування, особливо в період від посіву до появи сходів (висіяне насіння має поганий контакт з ґрунтом). Щоб отримати оптимальну щільність при прикочуванні профілю борозни, треба прорахувати основні характеристики коткую чого робочого органу.

Мета роботі. Тому поставлена задача розробити силову та кінематичну модель руху коткуючого робочого органу просапної сівалки в звичайному та вібраційно-осциляторному режимах роботи.

Реалізація роботи. Розглянемо коток, який перекочується по

оброблюваній поверхні ґрунту з утворенням борозенки під дією сил $F_{np.}$, $G = (M + m_1 + m_2) \cdot g$. Під час руху котка при його кутовій швидкості $\omega_{\kappa} > 0$, при кутовій швидкості дебалансів $\omega_1 = \omega_2 = 0$. Перекочування з утворенням борозни відбувається слідуючим чином, коток переміщається по полю утворюючи борозенку. Точка *a* рис. 1 переміщуючись в направленні швидкості V_a , давить на дотичну до неї ґрунтову частку Т по нормалі з силою N. Розкладемо силу N на дві складові: по направленню швидкості точки *a* та по дотичній до кола ($F_{rp.}$ та N_T).

Як бачимо з рисунка 1, N_T =Ntg ξ . Сила N_T прагне змусити ґрунтову частку Т ковзатися по робочій поверхні котка. Її ковзанню чинить опір сили тертя $F_{Tp.}$. Характер руху ґрунтової частки буде залежати від співвідношення між кутом ξ та кутом тертя ϕ_0 .

Рисунок 1 - Модель руху коткуючого робочого органу без вібрації при $\omega_1 = \omega_2 = 0, \omega_{\kappa} > 0.1$ – дебаланси, 2 – коток, 3 – пружина-демпфер, 4 –рама.

Якщо $\xi < \phi_0$, то $N_T = Ntg\xi < F_{max} = Ntg\phi_0$ і ковзання в даному випадку не буде, так як сила тертя $F_{Tp.}$, викликана дією сили N_T , не досягне свого максимального значення і, так як сила реакції буде рівна силі, що збудила її (F = N_T). В цьому випадку N_T та $F_{Tp.}$ взаємно урівноважуються, та ґрунтова частка Т виявляється під впливом однієї лише сили $N_{v.}$. При цьому частка T буде переміщатися разом з точкою *а* котка в напрямі її швидкості V_a , так би мовити буде відбуватися ущільнення без проковзування. Якщо $\xi > \phi_0$, то Ntg $\xi > Ntg\phi_0$ и, виходячи з цього N_T>F_{max}. В цьому випадку сила тертя досягнувши свого максимального значення F_{max}, не взмозі урівноважити дотичну складову N_T, та ущільнення під дією сили N_v, буде супроводжуватися ковзанням ґрунтових часток під дією N_v - F_{max} = N (tg ξ -tg ϕ_0).

Кут ξ змінюється від нуля в точці C до $\pi/2$ в точці A. В процесі підвищення від 0 до $\pi/2$ кут ξ приймає та значення кута тертя φ , так як 0 < $\varphi_0 < \pi/2$. Нехай в точці *a* кут $\xi = \varphi_0$ (рисунок 1). Тоді вище точки *a*, на дузі *a*B, кут $\xi > \varphi_0$ и спостерігається ковзання, а нижче точки *a* на дузі *a*C, - ущільнення грунту без ковзання. Як бачимо з рисунка 1:

$$\mathbf{h}_{\varphi 0} = \mathbf{OC} - \mathbf{OD} = \mathbf{r} - \mathbf{r} \cos 2\varphi_0 = 2\mathbf{r} \sin^2 \varphi_0. \tag{1}$$

Отже, на глибині від 0 до h - $h_{\phi 0}$ від поверхні поля буде ковзання, від h - $h_{\phi 0}$ до h – ущільнення ґрунту без ковзання. Дотичне переміщення ґрунтових часток, визиває підвищення тертя між ними та руйнування гуртових агрегатів і тому, небажане.

Глибина борозенки без осциляції визначається з формули В.П. Горячкина, [3] але тільки для котків в звичайним перекочуванням без вібраційно-осциляторної дії. З збільшенням швидкості перекочування колеса глибина колії та опір перекочуванню зменшується. Найбільший вплив швидкості перекочування колеса на htaF спостерігається на зв'язаних та найменше на сипучих ґрунтах. Виходячи з досліджень В.П. Горячкина отримаємо опір перекочування F дорівнює [3]:

$$F = h \cdot \sqrt[3]{\frac{G^2 q_{np.} b}{4D}}$$
(2)

де h – глибина колії, см.

G – сила тяжіння, Н., $G = (M + m_1 + m_2) \cdot g$.

q_{пр} – коефіцієнт об'ємного зминання ґрунту, Н/см³.

b – ширина колеса, см.

D – діаметр колеса, см

З формули В.П. Горячкина можна вивести параметр, що нас цікавить h для гладких котків без вібраційно-осциляторної дії.

$$h = \frac{F}{\sqrt[3]{\frac{G^2 q_{np} b}{4D}}}$$
(3)

Розглянемо рух прикочуючого котка в вібраційно-оциляторному режимів.

Рисунок 2 - Рух віброкотка ввібраційно-оциляторному режимі.

Розглянемо рух котка ввібраційно-оциляторному режимі (рис. 2) по оброблюваній поверхні ґрунту з утворенням борозни під дією рушійної сили котка F, рушійного моменту M_c та моменту опору дебалансів M_{d6} . Під час руху віброкотка ввібраційно-оциляторному режимі дебаланси обертаються синхронно за рахунок механічного зв'язку з амплітудою A> 0. Кутова швидкість котка ω_k >0, з величиною осциляції K, коли K ≥0. Кутова швидкість дебалансів ($\omega_1 = \omega_2$) >0.

Для описання руху механічної системивикористовуються рівняння Лагранжа.[4,5] Отримана слідуюча система диференціальних рівнянь, яка описує рух центра маси котка та обертання дебалансів:

$$\begin{pmatrix} M + \frac{I_k}{R^2} + 2m_1 \end{pmatrix} \ddot{x} - \frac{I_D}{2R^2} \ddot{x}_k = F - \frac{\sqrt{2}}{2} F_{tr} \sin \varphi - \frac{\sqrt{2}}{2} N; \quad (4)$$

$$\begin{pmatrix} \dot{l} + 2m_1 \end{pmatrix} \ddot{y} + F_{\ddot{t}\breve{o}} y + \frac{mHl}{R} \dot{\varphi}^2 \sin \varphi \sin \psi + \frac{\sqrt{2}}{2} F_{tr} \cos \varphi = -mg - 2mg; \quad (5)$$

$$2I_d \ddot{\varphi} = M_{\partial \theta} - M_c; \quad (6)$$

де

М - вага котка, кг

т - вага дебаланса, кг

*I*_{*k}</sub> - момент інерції відносно осі, що проходить крізь його центр мас перпендикулярно площині ХОҮ.</sub>*

 I_d - момент інерції дебаланса відносно осі обертання,

Н - відстань від центра мас дебаланса до осі обертання,

l - відстань між дебалансами,

F_{пр.} - коефіцієнт жорсткості пружини,

х, у - координати центру котка,

ф - кут повороту дебаланса,

ψ - кут встановлення дебалансів відносно осі OX,

 $F, M_{\partial e}, M_{c}$ - рушійні сили котка, рушійний момент та момент опору

дебалансів.

Системив графічному вигляді представлені на рисунку3.

Рисунок 3 - Рух центра мас котка.

При цьому переміщення в режимі осциляції в горизонтальній площині точки*С* дотичній з ґрунтом описується рівнянням (рис. 4).

$$-\frac{I_D}{2R^2}(\ddot{x}-\ddot{x}_k) = -\frac{\sqrt{2}}{2}F_{tr}\cos\varphi + \frac{mHl}{R}\dot{\varphi}^2\sin\varphi\cos\psi$$
(7)

де, F_{tr} – сила тертя.

Рисунок 4 - Рух нижньої точки С дотичної з ґрунтом.

Висновок: приведений рівняння розрахунку математичної моделі, як для звичайного режиму так і для коткуючого робочого органу вібраційноосциляторнії дії просапної сівалки. Виведені диференціальні рівняння які описують рух центра мас котка з вібраційно-осциляторною дією. В графічному вигляді представлено роботу прикочуючого котка вібраційно-осциляторної дії.

Список літератури:

 Кушнарев. А. С. Уменьшение вредного воздействия на почву робочих органов и ходовых систем машинних агрегатов при внедрении индустриальных технологий возделывания сельскохозяйственных культур/ А. С. Кушнарев. В. М. Мацепуро // Москва. ВСХИЗО, 1986 - с.56.

2. Тарасенко. Б. И. Плотность сложения піхотного слоя и урожайность сельскохозяйственных культур на черноземе Кубани. / Б. И. Тарасенко.

//Почвоведение, 1979, №8. - с. 54-60.

3. Кленин Н.И., Сакун В.А. Сельскохозяйственные и мелиоративные машины: Элементы теории рабочих процессов, расчет регулировачных параметров и режимов работы. / Н.И. Кленин. В.А. Сакун. // - М.: Колос, 1980. – с. 671.

4. Уравнение Эйлера — Лагранжа. [Электронный ресурс] Режим доступа к информации: http://ru.wikipedia.org/wiki/Уравнение_Эйлера_—_Лагранжа

5. Зеликин М. И. Оптимальное управление и вариационное исчисление/ М.
И. Зеликин // - УРСС, Москва, 2004. – с. 160.

6.Синеоков Г. Н., Панов И. М. Теория и расчет почвообрабатывающих машин. / Г. Н. Синеоков, И. М. Панов. – М., Машиностроение, 1977. – 330 с.

Аннотация

Разработка математической модели движения прикатывающего катка вибрационно - осциляторного действия для пропашной сеялки

В.С. Дудка

В работе приведен расчет математической модели движения прикатывающего катка вибрационно-осцилляторного действия для пропашной сеялки.

Abstract

Development of a mathematical model of the motion of the roller which buries vibration relapsing progressive actions for the purpose landing machine

Dudka V.S.

In the calculation of the mathematical models of movement of the ice rink which plays vibration relapsing progressive actions for the purpose landing machine