МОДЕЛИРОВАНИЕ ЭЛЕКТРИЧЕСКИХ ПРОЦЕССОВ, ПРОИСХОДЯЩИХ В ИММУННЫХ КЛЕТКАХ, ПРЕДСТАВЛЕННЫХ В ВИДЕ СХЕМ ЗАМЕЩЕНИЯ

Шерстюк А. В.

Харьковский национальный технический университет сельского хозяйства имени Петра Василенко

В статье рассматриваются подходы к нахождению собственных частот электромагнитных колебаний различных структур биологических систем.

Постановка проблемы. Клетка являет собой сложное образование, окруженное мембраной. Среда, которая окружает клетку, и среда внутри клетки имеют разные величины относительной диэлектрической проницаемости, как и мембранные белки. Установлено, что характерной особенностью воздействия электромагнитных излучений (ЭМИ) на живые организмы является его резонансный характер – биологический эффект проявляется в узких интервалах частот [1].

Анализ последних исследований и публикаций. Анализ литературы показал, что максимальный отклик биологической среды на воздействующее высокочастотное излучение будет наблюдаться в том случае, когда частота внешнего гармонического воздействия приближается к частоте одного из собственных колебаний системы, т.е. в случае резонансного взаимодействия.

Цель статьи. Исходя из всего вышесказанного, вытекает задача о нахождении собственных частот электромагнитных колебаний различных иммунных клеточных структур биологических систем.

Основные материалы исследования. Известно, что биологические объекты не гомогенны, а представлены разнообразными структурами, имеющими отличное строение. Элементом структуры биологических объектов является клетка. Протекающие в организме процессы представляют собой суперпозицию координированных функций его клеток. Клетки могут сильно различаться по размерам, форме и функциям, поэтому частоты, соответствующие собственным резонансам клетки, могут быть различны и лежать в определенном участке электромагнитного спектра.

Отсюда вытекает задача определения собственных резонансных частот тучных клеток, соответствующих участку биологически активных точек биологического объекта животного происхождения.

Согласно методике, представленной в работах [2, 3], поставленную задачу можно решить, представив клетку эквивалентной схемой замещения в виде комбинации сопротивлений (R), электрических емкостей (C) и индуктивностей (L), и определить для такой системы резонансные частоты. На рис. 1 представлен один из возможных вариантов структуры клеточной мембраны [2], позволяющий оценить сложность построения единственной эквивалентной схемы замещения.

Рассмотрим решение задачи через представление клетки эквивалентной схемой замещения. Подобные схемы замещения биологических клеток и их мембран разработаны авторами [2, 3], детальное рассмотрение осуществлялось в работе [3]. Однако из нескольких

предложенных вариантов представления клетки в виде эквивалентной схемы замещения [3], в которых клетка представляется последовательным соединением схем замещения клеточной мембраны и протоплазмы, предпочтение следует отдать варианту, изображенному на рис. 2 с учетом исследований, проведенных в работе [2].

Рисунок 1 – Структура клеточной мембраны

Представим эквивалентную схему замещения клетки в виде четырехполюсника, составленного из соединения эквивалентной схемы клеточной мембраны и эквивалентной схемы клеточной протоплазмы.

Приведём данные о значениях геометрических размеров и электрических параметрах клеток и их составляющих, опубликованные в научной литературе [3, 4].

В [2] отмечалось, что магнитные свойства клеток и тканей выражены слабо и для них значение относительной магнитной проницаемости $\mu \approx 1$.

Необходимо отметить, что для расчета электрических параметров клеточных мембран существует три основных подхода к моделированию [5]:

- модели однородного диэлектрика;

 модели с использованием эмпирических потенциалов;

- модели с явно заданным липидным бислоем.

Использована модель однородного диэлектрика, преимущество которой состоит в простоте и вычислительной эффективности, однако при этом считается, что клеточная мембрана гомогенна и ее диэлектрическая проницаемость постоянна, хотя в действительности она колеблется в широких пределах (от 2 до 80), благодаря наличию воды в каналах и на поверхности бислоя. Не рассматривается также картина "белок – растворитель". Однако указанные недостатки можно учесть при составлении эквивалентной схемы клетки.

Рисунок 2 – Эквивалентная схема замещения биологической клетки

Для протоплазмы, представляющей собой последовательное соединение элементов L_n , C_n , R_n выражение для входного сопротивления имеет вид:

$$Z(j\omega) = \frac{\omega RC + j(\omega^2 CL - 1)}{\omega C}, \qquad (1)$$

а резонанс возникает при $f_n = \frac{1}{2\pi \sqrt{L_n C_n}}$. Для экви-

валентной схемы биологической клетки, изображенной на рис. 2, выражение для выходного сопротивления имеет вид:

$$Z_{Gblx}(j\omega) = \frac{R_{M}}{1 + (\omega R_{M}C_{M})^{2}} + j \left[\omega L_{M} - \frac{\omega R_{M}^{2}C_{M}}{1 + (\omega R_{M}C_{M})^{2}}\right], (2)$$

а для входного сопротивления

$$Z(j\omega) = \left(R_n + \frac{R_M}{1 + (\omega R_M C_M)^2} \right) + j \left[\omega (L_M + L_m) - \frac{1}{\omega C_n} - \frac{\omega R_M^2 C_M}{1 + (\omega R_M C_M)^2} \right].$$
 (3)

Полученные данные позволяют определить для выбранных параметров резонансные частоты клетки, приравнивая мнимую часть выражения (3) к нулю. Уравнение для определения резонансных частот в данном случае имеет вид:

$$4\omega^4 + B\omega^2 + D = 0, \qquad (4)$$

где
$$A = C_{M}^{2} R_{M}^{2} C_{n} (L_{M} + L_{n});$$

 $B = C_{n} (L_{M} + L_{n}) - R_{M}^{2} C_{M} (C_{M} + C_{n});$
 $D = -1$

Численные результаты решения уравнений (4) для определения резонансных частот клеток лимфоцитов и тучных клеток получены с помощью специализированного пакета MathCAD и могут быть представлены следующими соотношениями:

Для выполнения численного расчета, на основе анализа источников [2, 3, 4], возьмем следующие значения параметров клетки и ее составляющих, приведенных в таблице 1.

Таблица 1 – Значения параметров иммунных клеток

	<i>d</i> _{<i>c</i>} , м	С _м , Ф	<i>R</i> _м , Ом	<i>R_n</i> , Ом	$\mathcal{E}_{_{\mathcal{M}}}$	\mathcal{E}_n
лим -фо- ци- ты	7x10 ⁻⁶	2x10 ⁻¹⁴	10 ⁹	10 ⁴	2,5	40-80
туч- ные клет ки	$2,5x_{5}10^{-1}$	2x10 ⁻¹⁴	10 ⁹	10 ⁴	3	40-80

Индуктивности клеточной мембраны и протоплазмы соответственно [3] определяются:

$$L_{\scriptscriptstyle M} = \frac{\mu_0}{\varepsilon_0 \varepsilon_{\scriptscriptstyle M}} C_{\scriptscriptstyle M} ; \ L_n = \frac{\mu_0}{\varepsilon_0 \varepsilon_n} C_n ,$$

где $\mu_0 = 4\pi \cdot 10^{-7} \, \Gamma$ н/м; $\varepsilon_0 = 8,85 \cdot 10^{-12} \, \Phi$ /м;

 $C_n = 2\pi \varepsilon_0 \varepsilon_n d_c$, где d_c – диаметр сферической модели клетки.

После подстановки данных в приведенные соотношения, получаем значения параметров клеточных мембран и протоплазмы (табл. 2, рис. 3, 4).

Клетки	<i>R</i> _м , Ом	$L_{\scriptscriptstyle M}, \Gamma_{\rm H}$	$C_{\scriptscriptstyle M}, \Phi$
Лимфо- циты	10 ⁹	1,14.10-9	2.10-14
Тучные клетки	10 ⁹	9,47·10 ⁻¹⁰	$2 \cdot 10^{-14}$
Клетки	<i>R</i> _{<i>n</i>} , Ом	L_n , Гн	C_n, Φ
Лимфо- циты	10 ⁴	5,52.10-11	3,11.10-14
Тучные клетки	10 ⁴	1,58·10 ⁻¹⁰	8,89·10 ⁻¹⁴

Таблица 2 — Расчетные данные электрофизических параметров клеток для $\varepsilon_n = 80$

Рисунок 3 – Зависимость резонансной частоты лимфоцита от значений диэлектрической проницаемости протоплазмы

Имея указанные данные, возможно определить резонансные частоты иммунных клеток – лимфоцитов и тучных клеток, табл. 3.

Таблица 3 – Результаты определения резонан	сных
астот тучных клеток и лимфоцитов	

Лимф	роциты	Тучные клетки		
ε_n	$f_{pes},$ ГГц	\mathcal{E}_n	$f_{pes}, \Gamma \Gamma$ ц	
40	48,19	40	41,10	
50	45,80	50	40,32	
60	44,08	60	39,78	
70	42,80	70	39,37	
80	41,79	80	39,06	

Выводы. Резонансные частоты иммунных клеток при сделанных допущениях лежат в миллиметровом диапазоне (41,1 до 44 ГГц).

Эффективность использования терапевтического ЭМИ данного диапазона неоднократно подтверждена многочисленными опытами, активно используется в квантовой медицине и ветеринарии и может быть использована для стимуляции иммунитета животных.

Список использованных источников

1. Бецкий О. В. Миллиметровые волны в биологии / О. В. Бецкий, М. Б. Голант, Н. Д. Девятков. М.: Знание, 1988. – 64 с.

2. Мельник Є. Т. Моделювання резонансної взаємодії мікрохвильових сигналів з клітинами живого організму / Є. Т. Мельник, О. П. Яненко. Вісник ЖДТУ. – №1 (52). – Київ, 2010. – С. 115 – 119.

3. Никулин Р. Н. Исследование воздействия СВЧизлучения низкой интенсивности на биологические объекты / Р. Н. Никулин. Материалы III Всероссийской конференции "Радиолокация и радиосвязь". -ИРЭ РАН, 26 – 30 октября 2009 г. – С. 136 – 140.

4. Ярилин А. А. Основы иммунологии: Учебник / А. А. Ярилин. М.: Медицина, 1999. – 608 с.

Анотація

МОДЕЛЮВАННЯ ЕЛЕКТРИЧНИХ ПРОЦЕСІВ В ІМУННИХ КЛІТИНАХ, ЯКА ПРЕДСТАВЛЕНИХ У ВИГЛЯДІ СХЕМ ЗАМІЩЕННЯ

Шерстюк О. В.

У статті розглядаються підходи до знаходження власних частот електромагнітних коливань різних структур біологічних систем.

Abstract

DESIGN OF ELECTRIC PROCESSES IN THE IMMUNES CELLS REPRESENTED AS CHART OF SUBSTITUTION

A. Sherstyuk

The approaches to finding of own frequencies of electromagnetic vibrations of different structures of the biological systems are examined in the article.