РАСЧЕТ ЭКОНОМИЧЕСКОЙ ЭФФЕКТИВНОСТИ ПРИ ВНЕДРЕНИИ ЭЛЕКТРОМАГНИТНЫХ ТЕХНОЛОГИЙ В СООРУЖЕНИЯХ ЗАЩИЩЕННОГО ГРУНТА

Куценко Ю. Н.

Таврический государственный агротехнологический университет

Обоснована экономическая эффективность применения электромагнитных технологий в сооружениях защищенного грунта выращивания томатов и огурцов.

Постановка проблемы. Обеспечение продуктами питания в мире становится первоочередной проблемой с учетом уменьшения земельных площадей для возделывания сельскохозяйственных растений и увеличения населения и улучшения условий жизни в развивающихся странах, особенно среднеазиатского региона. Решения данной проблемы лежит в направлении максимального увеличения урожайности растений, выращенных на существующих площадях за счет интенсификации технологии выращивания, связанных с активизацией вегетационного развития, выбрасывания цветка, созревания зерна, др.

Современное растениеводство, в том числе и в сооружениях защищенного грунта, к сожалению, перенасыщено химическими соединениями, которые, как считается, активизируют и защищают растения в период развития и созревания. Понятно, что в уровне экологической чистоты, полученных таким образом продуктов питания вызывает сомнения, особенно с учетом увеличения в последнее время применения всевозможных стимуляторов роста или дезинфекционная обработка химикатами от вредителей.

С другой стороны, в дальнейшем ожидается внедрения более жестких параметров контроля над экологической чистотой продуктов питания.

Поэтому, разработка и внедрение новых, энергосберегающих экологически чистых технологий является исключительно актуальной задачей для науки.

Анализ последних исследований и публикаций. Главным заданием производителей сельскохозяйственной продукции является максимальная сохранность ее полезных свойств. К потребителю должна поступать продукция высокого качества с высокими экологическими стандартами. Важную роль в этом процессе играет применяемая технология переработки продукции овощеводства [1,2].

Использование электромагнитного поля в электромагнитных процессах расширяет функциональные возможности традиционных способов очистки, сортировки, сушки сырья и резко снижает энергозатраты.

Анализ научно-технических источников информации позволяет сделать вывод, что в настоящее время электротехнология — это отрасль, которая развивается высокими темпами, дает максимально возможный энергосберегающий эффект и потому экономически обоснованная. Электромагнитные поля действуют на живую ткань продукции переработки или как на физический объект.

Применения электротехнологий с другими технологиями позволяют улучшить потребительские качества и физико-химические свойства продукции сельского хозяйства. Таким образом, применение электротехнологий в овощеводстве является одним из эффективных направлений повышения урожайности биологических объектов растительного направления.

Цель статьи. Выполнить экономические расчеты и обосновать применение электромагнитных технологий выращивания томатов и огурцов в сооружениях защищенного грунта

Основные материалы исследования. Расчет проводился по методике определения экономической и энергетической оценке использования в народном хозяйстве новой техники и технологий [3,4].

Оптимальный вариант принятых решений определяется системой экономических показателей.

Коэффициент экономической эффективности электромагнитной технологии возделывания томатов и огурцов рассчитывают по формуле:

$$\mathcal{F}_{\text{hob.texh.}} = \frac{\Delta \Pi}{K} \tag{1}$$

где $\Delta\Pi$ – прирост прибыли;

К – общая сумма дополнительных капиталовложений, тыс. грн.

Срок окупаемости дополнительных капиталовложений определяется по формуле:

$$T_{\text{доп. кап. влож. нов. техн.}} = \frac{K_2 - K_1}{B_1 - B_2}$$
 (2)

где $T_{\text{доп.кап.влож.нов.техн.}}$ – строк окупаемости дополнительных капитальных вложений на внедрение новых электротехнологий.

 K_1, K_2 — капитальные вложения в контрольном и опытном вариантах;

 B_1, B_2 — приведенные затраты контрольного и опытного варианта.

Приведенные затраты в контрольном (базовом) и опытном варианте технологий определяются как:

$$\mathbf{B}_{1} = \mathbf{C}_{1} + \mathbf{E}_{H} \cdot \mathbf{K}_{1} \tag{3}$$

$$B_2 = C_2 + E_H \cdot K_2 \tag{4}$$

где $C_1,\ C_2$ - себестоимость единицы продукции, грн/ц.;

 $E_{\scriptscriptstyle \rm H}$ - нормативный срок окупаемости капитальных вложений, предусматривающий минимально допустимую эффективность вложения средств.

Выполненные расчеты представлены в табл.1. Для создания новой электромагнитной технологии выращивания овощных культур в тепличных хозяйствах рекомендуется использование электротехнологических установок (ЭТУ). ЭТУ включает в себя: ис-

точник стабилизированного напряжения, систему электродов, постоянных магнитов, монтажный комплект проводников и кабелей. Для измерения диэлектрической проницаемости газовой среды один генератор ГЛПД на частоту $70\ \Gamma\Gamma$ ц.

Таблица 1 – Показатели экономической эффективности

	Вариант	
Показатели	Томат	Огурец
	сорт "Лилос"	сорт "Кураж"
Урожайность, кг:		
ОПЫТ	34320,0	32760,0
контроль	11840,0	11680,0
Прибавка урожая, кг.	22480,0	21152,0
Затраты на продукцию, контроль, грн.	71040,0	69648,0
Выручка от реализации продукции, контроль, грн.	137344,0	119562,4
Себестоимость единицы продукции, контроль, грн./кг	6,0	6,0
Стоимость дополнительно полученной продукции, грн.	263768	217865,6
Дополнительные затраты:		
Стоимость ЭТУ, грн.	7300	7300
Стоимость ГЛПД, грн.	15000	15000
Затраты на электроэнергию, грн.	15284,0	15285
Монтаж электрооборудования, грн.	3650,0	3650,0
Стоимость 1 кВт час. электроэнергии, грн.	0,87	0,87
Затраты на продукции, опыт	105155,0	103890,0
Всего дополнительных затрат, грн.	151389	145125
Выручка от реализации продукции, опыт, грн.	351712,0	337428,0
Себестоимость единицы продукции, опыт, грн./кг	4,41	4,43
Срок окупаемости дополнительных капвложений, лет.	1,53	1,55
Уровень рентабельности, %	110,3	107,0
Коэффициент экономической эффективности	0,655	0,650
Годовой экономический эффект, грн.	27500	25080
в том числе грн./м ²	34,4	31,4

Выводы. Проведенные расчеты показывают, что экономический эффект от внедрения электромагнитной технологии выращивания овощных культур в сооружениях защищенного грунта составит 52,58 тыс. грн, в том числе: томаты -34,4 грн/м²; огурец -31,4 грн/м². Показатели базируются на данных экспериментальных исследований с использованием томатов сорта "Лилос" и огурцов сорта "Кураж".

Список использованных источников

- 1. Ярошенко П. Е., Монахов Б. С. Электрическое и магнитное воздействие при переработке с.-х. продукции // Механизация и электрификация сельского хозяйства. 2003. N24. С. 27-28.
- 2. Куценко Ю. М. Магнітогідродинамічне сортування сільськогосподарської продукції з використанням енергії ЕМП / Ю. М. Куценко, М. І. Лукашенко // Науковий вісник Таврійського державного агротехнологічного університету. Електронне наукове фахове видання Мелітополь: ТДАТУ. 2011. Вип. 1. Т.2. С. 132-141. Режим доступу: http://www.nbuv.gov.ua/e-journals/nytdau/index.html.
- 3. Економіка підприємства: Підручник / За ред. С. Ф. Покропивного – К.: КНЕУ, 1999. – 541 с.
- 4. Методика економічної та енергетичної оцінки типів плодоягідних насаджень, помологічних сортів і результатів технологічних досліджень у садівництві /

П. В. Кондратенко, Г. А. Борук та ін.: За ред. О. М. Шестопаля – К.: Науковий центр УААН "Плодівництво" інституту садівництва УААН, 2002. – 131 с.

Аннотация

РОЗРАХУНОК ЕКОНОМІЧНОЇ ЕФЕКТИВНОСТІ ПРИ ВПРОВАДЖЕННІ ЕЛЕКТРОМАГНІТНИХ ТЕХНОЛОГІЙ У СПОРУДАХ ЗАХИЩЕНОГО ҐРУНТУ

Куценко Ю. М.

Обгрунтована економічна ефективність застосування електромагнітних технологій в спорудах захищеного ґрунту вирощування томатів і огірків.

Abstract

CALCULATION OF ECONOMIC EFFICIENCY THE INTRODUCTION OF ELECTROMAGNETIC TECHNOLOGY IN GREENHOUSE PLANTS

Y. Kutsenko

Based on the economic efficiency of electromagnetic technology in facilities greenhouse cultivation of tomatoes and cucumbers.