СНИЖЕНИЕ ДИНАМИЧЕСКИХ НАГРУЗОК КОЛЕСНЫХ МАШИН С ШАРНИРНО-СОЧЛЕНЕННОЙ РАМОЙ ИСПОЛЬЗОВАНИЕМ ЭЛЕКТРОННЫХ СИСТЕМ

Подригало М.А., д.т.н., проф., Полянский А.С., д.т.н., проф., Дубинин Е.А., к.т.н., доц., Клец Д.М. к.т.н., доц.

Харьковский национальный автомобильно-дорожный университет

Задорожняя В.В., асп.

Харьковский национальный технический университет сельского хозяйства имени Петра Василенко

Предложены способ и конструкция снижения вертикальных ускорений, определяющих динамические нагрузки и повышающих поперечную устойчивость колесных машин с шарнирно-сочлененной рамой.

Специфика Постановка проблемы. условий труда операторов мобильных машин в агропромышленном производстве, неудовлетворительное износ техники предопределяют высокий травмирования. Так по некоторым источникам [1,2], травматизм операторов мобильных сельскохозяйственных машин примерно в 3 раза выше, чем в целом по отрасли. Установлено, что более половины зарегистрированных дорожно-транспортных происшествий приводят к опрокидыванию трактора или машинотракторного агрегата [3]. Поэтому исследования устойчивости этих машин на поперечном уклоне с прицепными и навесными орудиями актуальны.

Анализ публикаций и исследований. По данным Национального Совета безопасности США, на каждые 100 тысяч эксплуатируемых тракторов, вследствие их опрокидывания приходилось 8,6 смертельных случаев. Каждый год при опрокидывании тракторов погибает 540 человек [4].

В таблице 1 приведены показатели производственного травматизма со смертельным исходом среди трактористов-машинистов сельскохозяйственного производства за последние пять лет [4].

Таблица 1 – Показатели производственного травматизма со смертельным исходом среди трактористов-машинистов сельскохозяйственного производства (по видам происшествий)

Причины	Всего	%
Столкновение	999	33
Столкновение с	28	0,9
железнодорожным		
транспортом		
Опрокидывание	857	28,2
Опрокидывание при ДТП	42	1,4
Наезд на препятствие	1060	34,8
Другие виды происшествий	58	1,7

На сегодняшний день актуальным является использование высокоточных мобильных регистрационных комплексов для оценки динамических параметров тягово-транспортных средств при движении их на уклоне.

На кафедре технологии машиностроения и ремонта машин ХНАДУ разработан мобильный измерительный комплекс, состоящий из датчиков ускорений Freescale Semiconductor модели ММА7260QT, а также ЭВМ для снятия и архивации данных [4]. Этот комплекс позволяет определить вертикальные ускорения, влияющие на поперечную устойчивость колесных машин.

Цель работы. Обоснование и выбор способа снижения вертикальных ускорений, влияющих на поперечную устойчивость колесных машин с шарнирно-сочлененной рамой.

Для достижения указанной цели сформулированы следующие задачи исследования:

- выполнить анализ методов и способов обеспечения устойчивости колесных машин с шарнирно-сочлененной рамой;
- обосновать конструктивное решение снижения вертикальных ускорений.

Материалы и результат исследований. Сохранить и повысить поперечную устойчивость колесных машин во время движения по неровностям позволит применение способа повышения поперечной устойчивости колесных машин с шарнирно-сочлененными рамами [5]. Блок-схема поперечной устойчивости колесных машин со сложенными рамами, представлена на рисунке 1.

Рис. 1 – Блок-схема поперечной устойчивости колесных машин со сложенными рамами

На колесную машину с шарнирно-сочлененной рамой устанавливаются специальные датчики, которые измеряют вертикальные ускорения. Во время

движения по неровностям возникают динамические нагрузки за счет взаимного задней и передней полурам в вертикальной Установленные демпфирующие элементы создают усилия, направленные на выравнивание положения полурам и уменьшения вертикальных ускорений полурам а к значению, меньше критического ускорения акр. Предложенный способ позволяет снизить динамические нагрузки колесных маши сложенными рамами за счет уменьшения вертикальных ускорений полурам и устранения ударных нагрузок, тем самым повышая ИХ поперечную устойчивость.

Чтобы информировать оператора о процессе снижения динамических нагрузок предлагается усовершенствованный способ, который позволит защитить колесные машины со сложенными рамами от опрокидывания на склоне.

Реализация предложенного способа иллюстрируется рисунком 2.

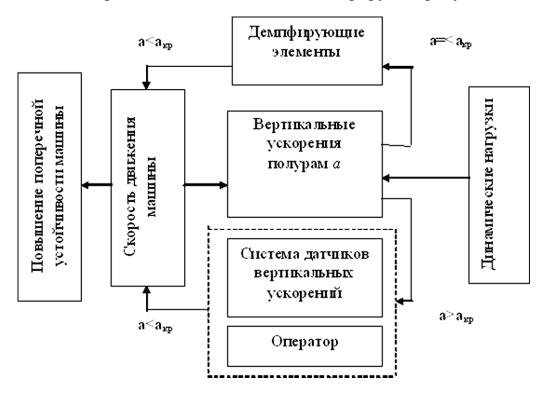


Рис. 2 – Блок-схема защиты колесных машин со сложенными рамами от опрокидывания на склоне

В случае превышения ускорения акр или приближения к этому значению, на экране системы, которая устанавливается в кабине колесной машины, появляется предупреждение и звучит сигнал. Оператор должен снизить скорость или остановить машину. Это позволяет повысить безопасность передвижения колесных машин с шарнирно-сочлененными рамами во время движения по неровностям за счет включения оператора в процесс снижения динамически нагрузок.

Конструкцию устройства, что снижает вертикальные ускорения, представляет корпус, в котором установлен горизонтальный и вертикальный шарниры, а также упорные элементы, выполненные, в виде приливов и оснащены демпфирующими элементами, которые связаны одним концом с

приливом на корпусе шарнира, а другим – с приливом полурамы, причем приливы шарнира и полурамы выполнены в виде стаканов [6].

Устройство для обеспечения поперечной устойчивости колесных машин с шарнирно-сочлененной рамой (рисунок 3) состоит: из корпуса 1, в котором установлены горизонтальный и вертикальный шарниры, соединяющие собой переднюю 2 и заднюю 3 полурамы, приливы в виде стаканов 4 и демпфирующие элементы 5.

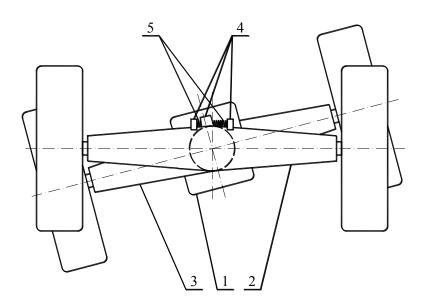


Рис. 3 — Устройство для обеспечения поперечной устойчивости колесных машин с шарнирно-сочлененной рамой:

1 – корпус; 2 – передняя полурама; 3– задняя полурама; 4 – стаканы; 5 – демпфирующие элементы

работает Устройство следующим образом. Bo время движения возникают динамические нагрузки счет взаимного перемещения передней 1 и задней 2 полурамы в вертикальной площе. демпфирующие элементы 5 создают Установленные усилие, направлено на выравнивание положения полурамы и уменьшения их скорости относительно перемещения. Это позволяет повысить поперечную устойчивость колесных машин с шарнирно-сочлененной рамой во время движения по неровностям.

Оснащение устройством колесных машин с шарнирно-сочлененной рамой обеспечит уменьшение динамических нагрузок во время движения неровностями и недопущение превышения указанной границы значения угла наклона передней полурамы, относительно задней, повышения поперечной устойчивости и надежности при эксплуатации.

Выводы. 1. Предложены способы снижения динамических нагрузок колесных машин с шарнирно-сочлененными рамами во время движения по неровностям за счет уменьшения вертикальных ускорений полурам и устранение ударных нагрузок, тем самым повысив их поперечную устойчивость.

2. Предложено конструктивное решение демпфирующего устройства снижающее динамические нагрузки и определяющие поперечную устойчивость машины работающей на уклонах.

Список использованных источников

- 1. Колинз Д., Моррис Д. Анализ дорожно-транспортных происшествий.- М.: Транспорт, 1971.
- 2. Джонс И.С. Влияние параметров автомобиля на дорожно-транспортные происшествия./ И.С. Джонс М.: Машиностроение, 1979.-207с.
- 3. Задорожняя В.В. Актуальность научной задачи устойчивости шарнирносочлененных колёсных машин. Сб. н. трудов ХНТУСХ Вып. 93. т.2. – 2010. С.279-286.
- 4. Спосіб підвищення поперечної стійкості колісних машин зі складаними рамами. Пат. 63494 Україна, МПК B60W 30/02 / Подригало М.А., Полянський О.С., Дубінін Е.О., Задорожня В.В. (Україна). №201103212; Заявл. 18.03.11; Опубл. 10.10.11, Бюл. №19. 3 с.
- 5. Пристрій для забезпечення поперечної стійкості колісних машин з шарнірнозчленованою рамою. Пат. 63377 Україна, МПК B62D 21/00 / Подригало М.А., Полянський О.С., Дубінін Е.О., Клец Д.М., Задорожня В.В. (Україна). -№201103211; Заявл. 18.03.11; Опубл. 10.10.11, Бюл. №21. – 2 с.
- 6. Полянский А.С., Задорожняя В.В., Хворост А.Г. Повышение надёжности и безопасного использования тракторов. Сб. н. трудов ХНТУСХ Вып.103. 2010. С. 314-319.

Анотація

ЗНИЖЕННЯ ДИНАМІЧНИХ НАВАНТАЖЕНЬ КОЛІСНИХ МАШИН З ШАРНІРНО-ЗЧЛЕНОВАНОЮ РАМОЮ ВИКОРИСТАННЯМ ЕЛЕКТРОННИХ СИСТЕМ

Подригало М., Полянський О., Дубінін Е., Клец Д., Задорожня В.

Запропоновані спосіб і конструкція зниження вертикальних прискорень, що визначають динамічні навантаження і підвищують поперечну стійкість колісних машин з шарнірно-зчленованою рамою.

Abstract

DECLINE OF DYNAMIC LOADING WHEELED MACHINES WITH THE JOINT-JOINED FRAME BY THE USE OF ELECTRONIC SYSTEMS

M. Podrygalo, A. Poljansky, E. Dubinin, D. Kletch, V. Zadorognaja

A method and construction of decline of vertical accelerations qualificatory the dynamic loading and step-up transversal stability of the wheeled machines with the joint-joined frame are offered.