МОДЕЛЮВАННЯ ПЛОЩІ ПОПЕРЕЧНОГО ПЕРЕРІЗУ КОМІРКИ РОТАЦІЙНОГО ВАКУУМНОГО НАСОСА

Д. І. Федорина, асистент

(Львівський національний аграрний університет)

Розглядається метод визначення площі поперечного перерізу комірки при куті повороту ротора ротаційного вакуумного насоса. Промодельована залежність площі поперечного перерізу комірки від кута повороту ротора та кута між двома радіальними пластинами

Постановка проблеми та завдання дослідження. До основних параметрів вакуумного насоса відносять швидкість дії відсмоктування, граничний тиск, найменший робочий тиск, найбільший робочий тиск, найменший впускний тиск та найбільший випускний тиск.

Наведені вище параметри залежать від конструктивних розмірів вакуумного насоса й кінематичних характеристик, зокрема частоти обертання ротора. Конструктивні розміри насоса впливають на такий параметр, як площу поперечного перерізу комірки, яка безпосередньо характеризує продуктивність вакуумного насоса.

Отже, для забезпечення оптимальних параметрів виникла потреба в дослідженні конструкції вакуумного насоса, і зокрема моделюванні зміни площі поперечного перерізу комірки вакуумного насоса ротаційного типу в залежності від кута повороту ротора.

Аналіз останніх досліджень і публікацій. Достатньо досліджені вакуумні насоси типів РВН, УВ за спрощеними аналітичними залежностями. Дані насоси при тиску всмоктування 13 кПа мають теоретичну швидкодію від 1 м³/с [4].

Мжельський Н. І. пропонує визначити подачу вакуумного насоса за формулою [4] :

$$Q = 60 \cdot F_k \cdot L \cdot n \cdot \lambda \cdot z \tag{1}$$

де F_k – площа поперечного перерізу комірки, м²;

L – довжина ротора насоса, м;

n – частота обертання ротора насоса, хв.⁻¹;

 λ – коефіцієнт подачі;

z – кількість пластин, шт.

Аналіз формули (1) показує, що є труднощі при визначенні площі поперечного перерізу робочої комірки між сусідніми пластинами.

$$F_{k} = \frac{\lambda}{2}R^{2} \left[2\beta \left(1 - \frac{\lambda}{2}\right) - \overline{\delta} \left(1 - \frac{\lambda}{4}\right) + \left(4\sin\frac{\beta}{2} - \overline{\delta}\cos\frac{\beta}{2}\right) \times \cos\varphi + \lambda \left(\sin\beta - \frac{\overline{\delta}}{4}\cos\beta\right)\cos2\varphi \right], (2)$$

$$\lambda = \frac{m}{2} - \text{відносний експинтреситет:}$$

 $=\frac{m}{R}$ – відносний ексцинтреситет;

 $\overline{\delta} = \frac{\delta}{R}$ — безрозмірна величина, що представляє собою відношення товщини пластини до радіусу циліндра;

 β – кут між сусідніми пластинами, град.;

 φ – кут повороту ротора насоса, град.;

R – радіус циліндра насоса, м.

Запропонована формула для визначення площі поперечного перерізу комірки має певні спрощення, що унеможливлює похибку.

При цьому кут нахилу пластини до радіуса ротора за даними дослідженнями [4] практично не впливає на теоретичну продуктивність ротаційних машин.

Дослідники Хлумський В. П., Головінцев А. Г, Зеленецкий С. Б. [6] вважають, що на процес роботи ротаційних пластинчатих насосів істотно впливає кут нахилу пластин відносно радіуса ротора. Оптимальним для вакуумних насосів визнаний кут 20°, який забезпечує збільшення ступеня наповнення робочої комірки повітрям при всмоктуванні.

Мишляєв Л. У. досліджуючи вакуумний насос з розвантажувальними кільцями, запропонував визначення теоретичної продуктивності насоса з урахуванням об'єму, який займають пластини [5].

Дослідження Бінеєва Р. Е. показують, що на продуктивність вакуумного насоса істотно впливає спрацювання пластин по товщині й ширині [1].

Важливе значення в процесі експлуатації вакуумного насоса є забезпечення параметрів надійності й робото здатності.

За даними Карпичева С. I. [3], спрацювання торцевих кришок на 0,1мм понижує продуктивність насоса в середньому на 4...5 м³/год., спрацювання пластин по довжині на 1мм зменшує продуктивність на 6...8 м³/год., спрацювання по товщині на 1мм знижує продуктивність на 3...4 м³/год.

Враховуючи особливості роботи вакуумного насоса ротаційного типу розроблена математична модель для моделювання площі поперечного перерізу комірки, що забезпечує вищу точність з врахування конструктивних і кінематичних параметрів [2].

Мета дослідження – провести моделювання площі поперечного перерізу комірки при куті повороту ротора вакуумного насоса ротаційного типу.

Виклад основного матеріалу. Розглянемо площу комірки, що утворена радіальними пластинами за формулою [2]:

$$S_{T} = \frac{\beta \cdot e^{2}}{2} \sin \beta \cdot \cos(2\varphi) + \frac{\beta^{2} \cdot e^{2}}{4} + \frac{\beta e R}{K} (\sin(K \cdot \sin(\varphi + 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + .$$
(3)
$$+ \frac{\beta \cdot R^{2}}{4} (\beta - C_{1} + C_{2} - C_{3} + C_{4}) - \frac{\beta \cdot r^{2}}{2} + \frac{\beta^{2} \cdot r^{2}}{2}$$

де С₁, С₂, С₃, С₄ – частини інтегрування.

$$C_1 = K^2 (\beta - \sin \beta \cdot \cos(2\varphi));$$

$$C_{2} = \frac{K^{4}}{24} (6\beta - 8\sin\beta \cdot \cos(2\varphi) + \sin(2\beta) \cdot \cos(4\varphi));$$

$$C_{3} = \frac{K^{6}}{1080} (30\beta - 45\sin\beta \cdot \cos(2\varphi) + 9\sin(2\beta) \cdot \cos(4\varphi) - \sin(3\beta) \cdot \cos(6\varphi));$$

$$C_{4} = \frac{32K^{8}}{40320} (\sin^{7}(\varphi - 0.5\beta) \cdot \cos(\varphi - 0.5\beta) - \sin^{7}(\varphi + 0.5\beta) \cdot \cos(\varphi + 0.5\beta) + \frac{35}{16}\beta - \frac{105}{64}\sin(2\varphi + \beta) + \frac{105}{64}\sin(2\varphi - \beta) + \frac{21}{64}\sin(4\varphi + 2\beta) - \frac{21}{64}\sin(4\varphi - 2\beta) - \frac{7}{192}\sin(6\varphi + 3\beta) + \frac{7}{192}\sin(6\varphi - 3\beta)).$$

Проведено моделювання зміни площі поперечного перерізу комірки ротаційного вакуумного насоса в залежності від кута повороту ротора (ф) для різної кількості лопаток. Результати моделювання приведено в табл. і на рис.1,2.

Рис.1 Залежність площі поперечного перерізу комірки $S_{\rm T}$ від кута повороту ротора φ

	Вихідні дані: <i>e</i> = 0,00288 м; <i>R</i> = 0,016 м;							
Параметр		$r = 0,013$ m; $\lambda = 0,18$ m; $K = 0,180986$						
		Кут повороту ротора, φ град.						
	360	270	240	180	120	90	0	
Килькисть пластин, шт.;	180	180	2	2	2	$\frac{2}{180}$	180	
(y) між двома радіальними пластинами, р,	160	160	160	160	180	180	180	
$S_T = \frac{\beta \cdot e^2}{2} \sin \beta \cdot \cos(2\varphi) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta e R}{K} (\sin(K \cdot \sin(\varphi + 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta e R}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta e R}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta e R}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta e R}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta e R}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta e R}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta e R}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta e R}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta e R}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac$	1775	8897	7452	6019	7452	8897	1775	
$+ rac{eta \cdot R^2}{4} (eta - C_1 + C_2 - C_3 + C_4) - rac{eta \cdot r^2}{2} + rac{eta^2 \cdot r^2}{2}, \mathrm{m}^2$	0,003	0,002	0,002	0,002	0,002	0,002	0,003	
Кількість пластин, шт.;	3	3	3	3	3	3	3	
Кут між двома радіальними пластинами, β;	120	120	120	120	120	120	120	
$S_{T} = \frac{\beta \cdot e^{2}}{2} \sin \beta \cdot \cos(2\varphi) + \frac{\beta^{2} \cdot e^{2}}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi + 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta \cdot R^{2}}{4} (\beta - C_{1} + C_{2} - C_{3} + C_{4}) - \frac{\beta \cdot r^{2}}{4} + \frac{\beta^{2} \cdot r^{2}}{4}, \text{ M}^{2}$	0,001395	0,001214	0,001134	0,001063	0,001134	0,001214	0,001395	
	4	4	4		4			
Килькисть пластин, шт.; Кут між прома радіальними пластинами В:	4	4	4	4	4	4	4	
$Ry I Mik двома раднальними пластинами, р, Q^2 = Q^2 - Q - D$	90	90	90	90	90	90	90	
$S_T = \frac{\beta \cdot e^2}{2} \sin \beta \cdot \cos(2\varphi) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta e R}{K} (\sin(K \cdot \sin(\varphi + 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{4} + \frac{\beta e R}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{4} + \frac{\beta e R}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{4} + \frac{\beta e R}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{4} + \frac{\beta e R}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{4} + \frac{\beta e^2 \cdot e^2}{4} + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{4} + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) - \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \cos(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \cos(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \cos(\varphi - 0.5\beta))) + \frac{\beta e^2 \cdot e^2}{K} (\sin(K \cdot \cos(\varphi - 0.5$)7646)6496	06020)5606)6020)6496)7646	
$+rac{eta \cdot R^2}{4} (eta - C_1 + C_2 - C_3 + C_4) - rac{eta \cdot r^2}{2} + rac{eta^2 \cdot r^2}{2}$, m ²	0,00(0,00(0,00(0,00(0,00(0,00(0,00(
Кількість пластин, шт.;	6	6	6	6	6	6	6	
Кут між двома радіальними пластинами, β;	60	60	60	60	60	60	60	
$S_T = \frac{\beta \cdot e^2}{2} \sin\beta \cdot \cos(2\varphi) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi + 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) - \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \cos(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(\varphi - 0.5\beta)) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(\varphi - 0.5\beta)) + \frac{\beta^2 \cdot e^2}{4} + \beta $	003162	02603	02382	02195	02382	02603	003162	
$+\frac{\beta \cdot R^{2}}{4}(\beta - C_{1} + C_{2} - C_{3} + C_{4}) - \frac{\beta \cdot r^{2}}{2} + \frac{\beta^{2} \cdot r^{2}}{2}, \mathrm{m}^{2}$	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
Кількість пластин, шт.;	8	8	8	8	8	8	8	
Кут між двома радіальними пластинами, β;	45	45	45	45	45	45	45	
$S_T = \frac{\beta \cdot e^2}{2} \sin\beta \cdot \cos(2\varphi) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi + 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta)) - \sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta eR}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{4} + \frac{\beta^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{K} (\sin(K \cdot \sin(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{K} (\sin(K \cdot \cos(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{K} (\sin(K \cdot \cos(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{K} (\sin(K \cdot \cos(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{K} (\sin(K \cdot \cos(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{K} (\sin(K \cdot \cos(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{K} (\sin(K \cdot \cos(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{K} (\sin(K \cdot \cos(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{K} (\sin(K \cdot \cos(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{K} (\sin(K \cdot \cos(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{K} (\sin(K \cdot \cos(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{K} (\sin(K \cdot \cos(\varphi - 0.5\beta))) + \frac{\beta^2 \cdot e^2}{K} (\sin(K \cdot \cos(\varphi - 0.5\beta))) + \beta$)16082)12856	011601	10550	011601)12856)16082	
$+rac{eta \cdot R^2}{4} (eta - C_1 + C_2 - C_3 + C_4) - rac{eta \cdot r^2}{2} + rac{eta^2 \cdot r^2}{2}$, M ²	0,000	0,000	0,000	0,000	0,000	0,000	0,000	

Таблиця 1	. Результати моделювання	витрат площі поп	еречного перерізу	комірки ротаі	ційного вакуумного) насоса.
	· · · · · · · · · · · · · · · · · · ·	I		- F F - ··		

Рис.2. Залежність площі поперечного перерізу комірки S_T при різній кількості лопаток Z

Висновок. Аналіз зміни площі поперечного перерізу комірки між двома сусідніми пластинами вакуумного насоса ротаційного типу в залежності від кількості пластин та кута повороту ротора показав, що площа комірки максимальна при $\varphi = 0^{\circ}(360^{\circ})$ і становить $S_T = 0,0031775 \text{ м}^2$ і мінімальна при $\varphi = 180^{\circ}$ становить $S_T = 0,0026019 \text{ м}^2$ для ротора з двома лопатками. Із збільшенням кількості пластин площа поперечного перерізу комірки між двома сусідніми пластинами зменшується і для 8 пластин становить $S_T = 0,00016082 \text{ м}^2$.

Список використаних джерел

1. Бинеєв Р.Є. Исследование конструкции ротационного вакуумного насоса доильных установок с целью повышения его надежности: Автореф. Дис. канд. Техн. Наук. – Ростов, 1980 – 18 с.

2. Дмитрів В.Т. Модель теоретичної швидкодії ротаційного вакуумного насоса. / В. Т. Дмитрів, Д. І.Федорина // Вісник Харківського національного технічного університету сільського господарства імені Петра Василенка "Сучасні проблеми вдосконалення технічних систем і технологій у тваринництві. – 2011. – С. 81 – 87.

3. Карпычев С. И. Влияние износа деталей на производительность вакуумных насосов. / Карпычев С. И. //Научн. тр. – Волгоградский СХИ. – 1972. т.43. С 163 – 174.

4. Мжельский Н. И. Вакуумные насосы для доильных установок. Мжельский Н. И. – М.: Машиностроение, 1974 – 150 с. 5. Мышляев Л. В. Износ основных деталей вакуум-насосов. Труды ВНИИХИММАШ, вып. 32. / Мышляев Л. В. – 1959. – С. 58 – 59.

6. Хлумский В.П. Ротационные компрессоры и вакуум-насосы. – М.: машиностроение, 1971–125 с.

Аннотация

Моделирование площади поперечного сечения ячейки ротационного вакуумного насоса

Д. І Федорина

Рассматривается метод определения площади поперечного сечения ячейки при угле поворота ротора ротационного вакуумного насоса. Промоделирована зависимость площади поперечного сечения ячейки от угла поворота ротора и угла между двумя радиальными пластинами

Abstract

Modeling cross-sectional area cell rotation vacuum pumps

D. Fedorina

A method of determining cross-sectional area at the corner of the cell rotation of the rotor rotary vacuum pump. Simulated dependence of cross-sectional area of the cell rotation angle of the rotor and the angle between the radial plates