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Statistical estimation of g–renewal process parameters have been considered by many authors.  We show that this 
inverse problem is mathematically incorrect (the solution is not unique and/or is sensitive to statistical error) and re-
quires Tikhonov’s regularization. Regardless of the estimation method, the respective objective function usually in-
volves parameters of the underlying life–time distribution and simultaneously the restoration parameter.  In this paper, 
we propose to regularize this inverse problem by separating the estimation of the aforementioned parameters.    Using 
a simulation study, we show that the resulting extrapolation accuracy of the proposed method is considerably higher 
than that of the existing methods. 

 
Acronyms 
CDF – cumulative distribution function 
CIF – cumulative intensity function 
ECIF – empirical cumulative intensity function 
GRP – generalized renewal (or g–renewal) process 
HPP – homogeneous Poison process 
IFR – increasing failure rate 
MC – Monte Carlo 
MTTF – mean time to failure 
NHPP – non–homogeneous Poison process 
ORP – ordinary renewal process 
PDF – probability density function 
RSS – residual sum of squares 
SE – standard error 
TTF – time to the first failure 
 
Notation 
q  – restoration (or repair effectiveness) factor 
  – vector of parameters of the underlying life–

time distribution   
t – time 
W(t) – grenewal function denoting the expected cu-

mulative number of events (failures) 
f(t) –  probability density function  
F(t) – cumulative distribution function 
  – respectively, the scale and the shape 

parameters of Weibull distribution 
1. Introduction 
We consider a practically important problem of the 

estimation of the g–renewal process parameters and the 
prediction of g–renewal function, based on restricted (in 
time) empirical data. This problem often arises, for exam-
ple, in maintenance optimization (defining maintenance/ 
replacement time of a system) [12,13] and in forecasting 
of warranty repairs/costs [14,15]. 

From the standpoint of mathematics, statistical esti-
mation, i.e., evaluating model’s parameters based on the 
data can be viewed as an inverse problem.  This is in con-
trast to a forward problem, which involves evaluat-
ing/predicting data points based on the model parameters.  
Evans and Stark [5] draw some formal parallels between 
statistical estimation problems and mathematical inverse 
problems.  For example, they point out that identifiability 
(distinct models yield distinct probability distributions for 
the observed data) is similar to uniqueness (the forward 

operator maps at most one model into the observed data). 
Further, consistency (model parameters can be estimated 
with arbitrary accuracy as the number of data points 
grow) is related to stability of recovery (small changes in 
the data produce small changes in the recovered model). 

Most of the inverse problems are considered to be 
mathematically incorrect and/or ill–posed. A typical rem-
edy in this case is the so–called regularization, i.e., the 
introduction of additional information in order to solve an 
ill–posed problem or to prevent model overfitting.  Bayes-
ian estimation, Ridge regression and Lasso regression are 
all examples of regularization in statistical science. 

In this paper, we show that the problem of estimating 
parameters of a g–renewal process is mathematically ill–
posed or incorrect (ill–conditioned).  We propose a regu-
larization approach, which is neither Bayesian, nor 
Ridge/Lasso regression related. It is based on separating 
the underlying distribution parameters from the GRP res-
toration factor in their estimation. Using a simulation 
study, we show that the resulting extrapolation accuracy 
of the proposed method is considerably higher than that of 
the existing methods. 

The paper is structured as follows.  In Section II, we 
overview the g–renewal process and represent it as an 
inverse problem.  In Section III, we discuss existing esti-
mation methods of the g–renewal equation parameters 
and propose a regularization approach along with the re-
spective estimation procedure.  We use a simulation study 
to compare the accuracy of the proposed approach relative 
to the existing methods. In Section IV, we use a practical 
case study to show the efficiency of the proposed method. 

2. G–renewal estimation as an inverse problem 
Originally introduced by Kijima & Summita [6], the 

generalized renewal (g–renewal) process gained its prac-
tical popularity only after methods for estimating its pa-
rameters had become available. The non–linear least 
square estimation of the g–renewal process was first of-
fered by Kaminskiy & Krivtsov [1].  The maximum like-
lihood procedures were subsequently discussed by Yañez, 
et. al [2] and Mettas & Zhao [3].  The estimation of the g–
renewal restoration factor was addressed in detail by 
Kahle & Love [4].  

Mathematically, estimation of the g–renewal process 
amounts to solving the following g–renewal equation with 
respect to its parameters: 
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and F(t) and f(t) are the cumulative distribution func-
tion (CDF) and probability density function (PDF) of the 
underlying failure time distribution (note that g(t|0) = 

f(t)); q is the restoration factor, and 


 is the vector of 
parameters of the underlying life–time distribution. 

In other words, Equation (1) needs to be solved with 

respect to q and

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It can be shown that this inverse problem is ill–posed 

or incorrect.  According to Hadamard [7], a well–posed 
problem is such for which: a) a solution exist, b) the solu-
tion is unique, c) the solution depends continuously on the 
data in some reasonable topology.  A correct problem has 
almost the same definition except for c) the solution must 
be stable (meaning that small statistical errors in the data 
should not much influence the solution).  

Consider a g–renewal process with arbitrary and infi-
nitely increasing cumulative intensity function, W(t), cor-
responding to some underlying failure–time distribution 

function, F(t), and the restoration factor . In this 
setting, one can derive another solution corresponding to 

q=1: , simply because the cumulative 
intensity function, W(t), of the NHPP (i.e., g–renewal 
process with q=1) is formally equal to the cumulative 

hazard, H(t), of the respective underlying failure–time 
distribution [9].  This is to say that for a g–renewal proc-

ess with any value of 

1q 

( )( ) 1 W tF t e 

1q  , one can always find a solu-
tion in the above form of F(t) and q=1. Hence, the solu-
tion is not unique in general case, and, therefore, the re-
spective (inverse) problem is ill–posed. 

Even the ordinary renewal process (q=0) can be 
shown to have an ill–posed (or ill–conditioned) reverse 
problem.  Recall that the ordinary renewal equation in-
volves a convolution integral (which, of course, is also 
present in Eq. 1) : 
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As such, the respective inverse problem can be con-
sidered as a deconvolution problem, which is typically ill–
conditioned. Its solution is not stable with respect to the 
calculation error and/or empirical noise [10, 11]. 

The reverse (estimation) problem becomes even more 
complicated for the g–renewal process, as in addition to 
the parameters of the underlying life–time distribution, 
one has to also deal with the restoration parameter.  When 
discussing the estimation of the g–renewal process with 
the underlying Weibull distribution in [8], we noticed that 
two “competing” vectors of significantly different g–
renewal parameters yielded practically indistinguishable 
values of the CIF at several time cross–sections. 

As an illustration, let us choose the class of Weibull 

distribution functions, 1 exp( )F t t    , with scale 
parameter,  and shape parameter,  as the underlying 
failure–time distribution of a g–renewal process.Now, 
consider Figure 1, where we show three CIF’s simulated 
(under n=107 trials) with three sets of the underlying pa-
rameters: Case 1: {=1.0, =2.0, q1=0}, Case 2: 
{=0.949, =1.675, q2=0}, Case 3: {=0.949, 
=1.675, q3=0.1}. Cases 2 and 3 can be considered as 
empirical data fluctuating close to the exact solution 
(Case 1). 
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Figure 1 – CIF’s simulated (n=107) under various sets of Weibull parameters: 

Case 1: {=1.0, =2.0}, Case 2: {=0.949, =1.675}, Case 3: {=0.949, =1.675, q=0.1} 



 
Note that with as much as 20% difference in the 

Weibull shape parameter between Cases 1 and 2, the 
maximum difference in the respective values of the CIF is 
around 4% (at t=1.214).  Moreover, even though all cases 
presented in Fig. 1 can be considered as good approxima-

tions (interpolations) in the interval , they 

have significantly different g–renewal process parameters 
and, as a consequence, yield significantly different ex-
trapolations of the g–renewal function, as shown in Fig. 2. 
This indicates that even in the class of Weibull distribu-
tion functions, the inverse problem is ill–conditioned. 
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Figure 2 – CIF’s from Figure 1 extrapolated to 6 units in time 

 
There are many developed general methods of regu-

larization of inverse problem [10], however all of them 
require significant amount of additional calculations, be-
cause typically another optimization parameter (e.g., a 
Lagrange multiplier) is introduced in the problem. These 
methods are efficient in the case when corresponding 
forward problem is easy to solve. In our case, the forward 
problem is described by integral equation (1), which does 
not have a closed form solution. In this paper, we try dif-
ferent methods for solving the problem of extrapolation 
(prediction) of the g–renewal function and finally select a 
method, which is relatively stable with respect to a statis-
tical error. 

3. Accuracy of g–renewal function extrapolation 
Below we consider four different ways of approxi-

mating (estimating) the g–renewal function (Eq. 1) and 
compare them from the standpoint of the estimation and, 
ultimately, the extrapolation accuracy. 

In our numerical experiments, we simulated the g–
renewal process to obtain input data for further estima-
tion.  First, the “exact” CIF, was obtained via a Monte 
Carlo simulation (n=107) using the underlying Weibull 
distribution with the shape parameter of=2, the scale 
parameter of =1 and various values of the restoration 
factor q = 0, 0.5, 1.  The trial data set, representing the 
empirical CIF that simulates “statistical noise”, was ob-
tained via a Monte Carlo simulation (n=400) with the 
same set of parameters as in the exact CIF. The range of 
simulated W(t) was extended to approximately a unity 
thus allowing for (some proportion of) recurrent events. 
Finally, in all four methods, we used the sum of least 
squares as the objective function for minimization; how-
ever, the likelihood function or any other objective func-
tion can be used as well. 

3.1. Methodology 
Method 1: Generalized Pade approach 

In this approach, to approximate W(t), we use the 
generalized Pade functions in the following form: 
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where ai , bi – model parameters estimated from the 
data. 

 
Pade functions have the following advantages: a) 

they have the same or better convergence compared to the 
power series, b) they can include functions with singulari-
ties, c) estimation of the Pade function coefficients in-
volves solving only linear equations.  While looking for 
the best approximation, we try different values of m and k, 
and various substitutions for variable t, such as tp, e pt, (–1 
≤ p ≤ 1), and log(t). 

Method 2: G–Renewal MC approach 
This method, originally proposed in [1] and further 

improved in [16], searches for the optimal values of ,  
and q to minimize the objective function (in this case, 
RSS) by simulating trial values of the g–renewal function 
and comparing them to the exact or empirical CIF. 
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It must be noted that relative to Method 1, in Method 

2 the inverse problem is better defined, because simula-
tions are performed in the framework of Eq. 1 and under 
the assumption that the underlying function is Weibull, 
that is, additional information about the g–renewal proc-
ess is used. 

Method 3: G–Renewal MC approach with consecu-
tive estimation 



Existing methods of g–renewal process estimation 
[2–4], whether LSQ– or MLE–based, in their objective 
functions, usually involve parameters of the underlying 
life–time distribution simultaneously with the restoration 
parameter.  Method 2 is one of such examples.  

In Method 3, we propose to separate the estimation 
of the underlying life–time distribution parameters and 
the restoration parameter in two consecutive steps. The 
former can be readily estimated from times to the first 
failure (TTF), for which the respective statistical proce-
dures are well established. The latter can then be esti-
mated from the entire data set involving the first and the 
repeat failures.  In the second step, the objective function 
optimization is done with respect to just one parameter 
instead of three parameters (for the considered case of the 
Weibull distribution) thus increasing residual degrees of 
freedom and reducing the complexity of calculations. 

From the standpoint of the inverse problem solving, 
Method 3 is “more regularized” than Method 2, let alone 
Method 1.  This is because it uses information not only 
about the framework of the g–renewal process, but also 
about the underlying life–time distribution, which is an 
explicit term of the g–renewal equation (see Eq. 1). 

Method 4: G–Renewal MC approach with consecu-
tive estimation when TTF distribution is not available 
In some settings, such a single repairable system with 
multiple consecutive failures, TTF distribution is not 
available or cannot be properly estimated due to the lack 
of statistical data.  However, the TTF distribution can be 
estimated from the empirical CIF, when the value of this 
CIF is truncated in such a way that it corresponds primar-
ily to the first failures. In this case, the following ap-
proximation can be used for estimating Weibull parame-
ters: 

                       (5)   ( )t W t 

 
The sensitivity of the solution relative to the choice 

of the truncation point is discussed in Section 3.2. 
3.2. Comparative Analysis of Estimation Accuracy 
In this section, we compare the estimation accuracy 

of the four methods for various values of the g–renewal 
restoration parameter q = 0, 0.5, and 1. The underlying 
TTF distribution is Weibull with the shape and the scale 
parameters of 2 and 1, respectively, as discussed above. 
The estimating is done based on the empirical CIF 
(n=400). 

The results are shown in the Tables 1–3. The tables 
are structured as follows. The first column is the time 
interval. The second column is the “exact” CIF obtained 
by the Monte Carlo method with 107 trials. The third col-
umn is the “empirical” CIF with 400 trials, which is used 
for estimating parameters in all 4 methods. The relative 
error with respect to the exact solution is estimated by the 
corresponding RSS, which is shown in the last row of the 
third column. The fourth column is the percent of first 
failures (PFF) in relative units; note that PFF is used in 
Method 3 only for estimating the underlying Weibull dis-
tribution parameters. The remaining columns represent 
the CIF evaluated by Monte Carlo simulation after esti-
mating its parameters by the corresponding methods. RSS 
values calculated for each method with respect to the ex-

act and the empirical data are shown in the last two rows 
of these columns. We also calculated the overall relative 
error of the g–renewal parameters estimation as follows: 
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where 
 , 
 , 
q  are the g–renewal process parame-

ters estimated by various methods. 
 
Restoration Parameter q=0 (Ordinary Renewal 

Process) 
Table 1 summarizes the estimated CIF for the four 

methods in question along with the respective RSS values 
relative to both exact and empirical CIF’s under q=0, 
which is the case of the ORP. 

Method 1 yielded the following Pade approximation: 
W(t) = –0.259t0.6+1.023t1.2.  Method 2 resulted in these 

estimates of the g–renewal parameters: 
q = 0.020, 

 =0.949, 
 = 1.675, = 0.147. Method 3 resulted in the 

following estimates: 
q = 0, 

 =1.037, 
 = 2.006, 

=0.017. In this method, the Weibull parameters are esti-
mated from the PFF (the 3rd column in Table 1), and then 
the restoration factor is estimated from the entire data set 
in the framework of the g–renewal process equations. 
Note that we obtained a much more accurate estimation of 
all g–renewal process parameters applying this method. 

In Method 4, the empirical data were truncated at 
W(t)=0.5 for estimating Weibull parameters using (5), and 
then the restoration factor was calculated. Method 4 re-
sulted in the following estimates of the g–renewal pa-

rameters: 
q =0,  

 =1.057,  
 =2.056.  With the trunca-

tion point of W(t)=0.6, the estimated g–renewal parame-

ters are more accurate: 
q =0, 

 =1.009, 
 =1.998, 

=0.004. (The respective column for Method 4 in Table 1 
corresponds to the truncation point of W(t)=0.6). We no-
ticed that the obtained results significantly depend on the 
truncation point, because formula (5) is limited by a small 
time interval and its extension may lead to an approxima-
tion error, which is greater than statistical one. On the 
other hand, the statistical error can be reduced by involv-
ing more data through the increase of the time interval. 
Ultimately, we decided to select truncation point that de-
livers the minimal value to the objective function (RSS). 

Method 2 showed the best approximation of the em-
pirical CIF data (RSS=0.002); however, the obtained val-
ues of corresponding g–renewal process parameters 

(
q =0.020, 

 =1.054, 
 =1.675) are far from exact val-

ues.  Comparing all values of RSS in the last row of Table 
1, one can conclude that all estimated models are in the 
same range of accuracy as the empirical data. The same 
conclusion can be derived from the direct comparison of 
data from the table. Methods 3 and 4 yield good approxi-
mation for the g–renewal process parameters.  

 



Table 1 – Estimated CIF along with the respective RSS values for exact and empirical CIF’s under q=0 
 

t n=107 n=400 PFF Method 1 Method 2 Method 3 Method 4 
0.061 0.004 0.003 0.003 -0.013 0.008 0.004 0.004 
0.121 0.015 0.020 0.020 0.008 0.027 0.016 0.015 
0.182 0.033 0.035 0.035 0.039 0.052 0.035 0.033 
0.243 0.058 0.058 0.058 0.076 0.084 0.062 0.059 
0.304 0.089 0.113 0.110 0.118 0.121 0.095 0.091 
0.364 0.127 0.178 0.173 0.163 0.162 0.135 0.129 
0.425 0.170 0.213 0.203 0.211 0.207 0.181 0.173 
0.486 0.218 0.263 0.248 0.262 0.256 0.233 0.222 
0.546 0.271 0.318 0.293 0.315 0.307 0.289 0.275 
0.607 0.328 0.370 0.335 0.370 0.362 0.349 0.334 
0.668 0.388 0.428 0.388 0.427 0.418 0.412 0.394 
0.728 0.451 0.473 0.425 0.485 0.476 0.479 0.458 
0.789 0.516 0.535 0.468 0.545 0.536 0.547 0.524 
0.850 0.583 0.593 0.510 0.607 0.597 0.617 0.591 
0.911 0.651 0.658 0.568 0.669 0.660 0.689 0.660 
0.971 0.720 0.720 0.615 0.733 0.723 0.761 0.730 
1.032 0.790 0.775 0.650 0.798 0.787 0.833 0.800 
1.093 0.860 0.843 0.690 0.865 0.851 0.906 0.871 
1.153 0.930 0.918 0.728 0.932 0.916 0.979 0.942 
1.214 1.000 1.000 0.778 1.000 0.982 1.052 1.013 

RSS (relative to n=400) n/a   0.003 0.002 0.023 0.013 
RSS (relative to n=107) 0.014   0.015 0.011 0.017 0.001 

 
Restoration Parameter q=0.5 (G–Renewal Process) 
Table 2 summarizes the estimated CIF for the four 

methods in question along with the respective RSS values 

for both the exact and the empirical CIF’s under q=0.5.  
Method 1 yielded the following Pade approximation: 

W(t) = 5.580 – 11.147 e–0.5t + 5.566 e–t.  
 

Table 2 – Estimated CIF along with the respective RSS values for exact and empirical CIF’s under q=0.5 
 

t n=107 n=400 PFF Method 1 Method 2 Method 3 Method 4 

0.054 0.003 0.003 0.003 0.004 0.004 0.003 0.003 

0.108 0.012 0.013 0.013 0.016 0.014 0.011 0.011 

0.162 0.026 0.023 0.023 0.035 0.031 0.025 0.025 
0.216 0.046 0.038 0.035 0.060 0.054 0.045 0.045 

0.270 0.072 0.063 0.060 0.091 0.083 0.070 0.072 

0.324 0.103 0.128 0.120 0.127 0.118 0.101 0.104 
0.378 0.140 0.163 0.148 0.168 0.157 0.137 0.142 

0.432 0.181 0.203 0.180 0.213 0.201 0.178 0.186 

0.486 0.227 0.250 0.220 0.262 0.250 0.225 0.234 
0.540 0.278 0.315 0.275 0.315 0.303 0.276 0.287 

0.594 0.334 0.363 0.308 0.371 0.359 0.331 0.345 

0.648 0.393 0.415 0.353 0.430 0.418 0.391 0.406 
0.702 0.457 0.483 0.405 0.492 0.481 0.455 0.470 

0.756 0.525 0.543 0.443 0.556 0.545 0.522 0.538 

0.810 0.596 0.610 0.478 0.622 0.612 0.594 0.607 
0.864 0.670 0.668 0.525 0.690 0.680 0.668 0.679 

0.918 0.748 0.745 0.570 0.759 0.750 0.745 0.752 

0.972 0.829 0.810 0.595 0.830 0.821 0.826 0.827 
1.026 0.913 0.883 0.618 0.902 0.893 0.909 0.903 

1.080 0.999 0.975 0.668 0.975 0.967 0.994 0.980 
RSS (relative to n=400) n/a   0.004 0.001 0.008 0.004 
RSS (relative to n=107) 0.010   0.012 0.006 0.0002 0.002 



 
Method 2 resulted in these estimates of the g–renewal 

parameters: 
q =0.14, 

 =1.054, 
 =1.964, =0.16. The 

value of restoration parameter is far from the exact one. 

Method 3 showed: 
q =0.44, 

 =1.01, 
 =2.037,  =0.031 

– the most accurate estimates in this case. Method 4 

yielded the following: 
q = 0.16, 

 =1.07, 
 = 2.105,  

=0.158. 
All four methods performed reasonably well. They 

are in the same range of accuracy as empirical data com-
pared to exact one.  Clear winners are Methods 3 and 4. 

Method 3 is the absolute winner (RSS=0.00015). Most 
importantly, it yields the best approximation for the g–
renewal parameters. 

Restoration Parameter q=1 (Non–Homogeneous 
Poisson Process) 

Table 3 summarizes the estimated CIF for the four 
methods in question along with the respective RSS values 
for both the exact and the empirical CIF’s under q=1, 
which is the case of the NHPP. 

 
Table 3 – Estimated CIF along with the respective RSS values for exact and empirical CIF’s under q=1 

 

t n=107 n=400 PFF Method 1 Method 2 Method 3 Method 4 

0.050 0.003 0.003 0.003 0.007 0.004 0.003 0.003 

0.100 0.010 0.013 0.013 0.018 0.013 0.011 0.011 

0.150 0.022 0.028 0.028 0.034 0.028 0.024 0.025 

0.200 0.040 0.040 0.038 0.054 0.048 0.043 0.044 

0.250 0.063 0.060 0.058 0.079 0.073 0.066 0.068 

0.300 0.090 0.100 0.093 0.109 0.103 0.095 0.098 

0.350 0.122 0.155 0.138 0.143 0.138 0.128 0.133 

0.400 0.160 0.183 0.155 0.181 0.177 0.166 0.172 

0.450 0.202 0.230 0.193 0.225 0.221 0.209 0.217 

0.500 0.250 0.273 0.228 0.273 0.270 0.257 0.267 

0.550 0.302 0.328 0.268 0.325 0.323 0.310 0.321 

0.600 0.360 0.370 0.298 0.382 0.381 0.367 0.380 

0.650 0.422 0.443 0.350 0.444 0.443 0.429 0.443 

0.700 0.489 0.525 0.408 0.510 0.509 0.496 0.510 

0.750 0.562 0.583 0.440 0.580 0.580 0.567 0.582 

0.800 0.639 0.630 0.463 0.656 0.655 0.644 0.658 

0.850 0.721 0.720 0.505 0.736 0.735 0.725 0.738 

0.900 0.809 0.835 0.555 0.820 0.819 0.810 0.822 

0.950 0.901 0.915 0.590 0.909 0.907 0.901 0.909 

1.000 0.998 1.003 0.613 1.003 0.999 0.996 1.001 

RSS (relative to n=400) n/a  0.002 0.002 0.004 0.003 
RSS (relative to n=107) 0.007  0.006 0.004 0.001 0.004 

 
Method 1 yielded the following Pade approximation: 

W(t) = 0.088 t + 0.915t2.  The first term is small relative 
to the second one, while the second term is close to the 
exact CIF with the underlying Weibull distribution, which 

in case of 
q =1 is W(t) = tThis is to say that the 

obtained Pade function approximates the exact solution 
reasonably well in this case. 

Method 2 resulted in these estimates of the g–renewal 

parameters: 
q =1.00, 

 =1.00, 
 =1.888, =0.046. 

Method 3 resulted in the following estimates: 
q =1.00, 

 =0.999, 
 =1.955, =0.018. Obviously, this is the best 

approximation for renewal process parameters. Method 4 

resulted in the following estimates: 
q =0.720, 

 =1.043, 
 =1.993, =0.116. 

All four methods performed reasonably well, but 
again, the winner is Method 3, if we compare the corre-
sponding data with the exact solution in this interval and 
the error in the g–renewal parameters estimation. 

Table 4 shows the summary of parameter estimation 
across all 4 methods.  Notably, the relative error of 
Method 3 is within the range of the relative standard error 
(0.05) associated with the empirical data set (n=400), 
which was used for parameter estimation in all three cases 
of q. Other methods do not show the same consistent ac-
curacy. 



Table 4 – Summary of parameter estimates under various values of the restoration factor 
 

    
 

q  
Exact 1.000 2.000 0.000 0.000 

Method 1 –0.259 t0.6+1.023 t1.2 
Method 2 0.949 1.675 0.020 0.147 
Method 3 1.037 2.006 0.000 0.017 
Method 4 1.009 1.998 0.000 0.004 
Exact 1.000 2.000 0.500 0.000 

Method 1 5.581-11.147e-0.5t+5.566e-t 
Method 2 1.054 1.964 0.140 0.160 
Method 3 1.010 2.037 0.440 0.031 
Method 4 1.070 2.105 0.160 0.158 
Method 4+ 1.028 2.055 0.500 0.027 
Exact 1.000 2.000 1.000 0.000 

Method 1 0.088t + 0.915t2 
Method 2 1.000 1.888 1.000 0.046 
Method 3 0.999 1.955 1.000 0.018 
Method 4 1.043 1.993 0.720 0.116 
Method 4+ 1.040 1.988 0.780 0.091 

 
3.3. Comparative Analysis of Extrapolation Accu-

racy 
The ultimate measure of the effectiveness of an ap-

proximation is, of course, the extrapolation accuracy.  It is 
important because most of the g–renewal applications 
involve the prediction of the expected (future) number of 
failures for the purpose of risk assessment, maintenance 
scheduling, spare logistics, etc.  Shown in Figures 3–5 are 
extrapolations of the g–renewal functions corresponding 
to each of the four discussed methods under the three val-
ues of the g–renewal restoration parameter (q=0, 0.5, 1). 
Note that Method 4+ uses an improved approximation 
algorithm, which is discussed in the end of this section. 

The worst is Method 1, except for the case q=1, when 
the exact solution is available in the form, which is in-
cluded in the set of approximation functions utilized by 
this method. Unlike the other three methods, Method 1 
does not use the additional information that the solution is 
the g–renewal CIF with underlying Weibull distribution 

function. 
It is remarkable that in the case of q=0, all methods 

except the first one provided good extrapolation results. 
Even though the obtained renewal parameters in Method 
2 are not close to the exact values, the corresponding CIF 
is close to the exact solution over a relatively large time 
interval.  If q=0, the solution is not much sensitive to an 
error in the Weibull shape parameter estimation. For large 
time values, the following asymptotic formula is valid: 

( ) /W t t  , where (1 1 / ) /      is the Weibull 
MTTF. For the Weibull parameters obtained in Method 2, 

0.942  . The exact value is 0.886  .  The difference 
is relatively small even though the shape parameter 
obtained in this method (1.675) is significantly less than 
the exact value (2.00). 
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Figure 3 – Extrapolated CIF’s corresponding to q=0 (see Table 1) 
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Figure 4 – Extrapolated CIF’s corresponding to q=0.5 (see Table 2) 
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Figure 5 – Extrapolated CIF’s corresponding to q=1 (see Table 3) 
 

As expected, Method 3 is the best extrapolation 
method in all considered cases. It has the following ad-
vantages: 

1. It is a stable, regularized method for solving the 
inverse problem of g–renewal CIF estimation and the 
subsequent extrapolation. 

2. In this method, the underlying distribution pa-
rameters are estimated separately from the restoration 
factor. This subtask is very well developed and any suit-

able method (e.g., MLE) can be applied efficiently. 
Moreover, the type of the distribution can be selected 
properly at this stage according to experimental data: not 
only Weibull distribution can be considered.  

3. The volume of statistical data is increased essen-
tially in this method compared to other 3 methods. This 
leads to increase of extrapolation accuracy. 

4. Method 3 is much simpler for calculation be-
cause, in its second step (solving the g–renewal equa-



tions) only one (restoration factor) parameter is estimated. 
Even a Monte Carlo simulation method can be selected in 
this case as the estimation method.  

Method 4 is the second best to be recommended, es-
pecially if the data are limited by the number of observed 
repairable systems. This method yields good extrapolation 

results for q=0, because in this case the results do not de-
pend much on accuracy of Weibull parameters estimation. 
It is also good if q=1, because Eq. (5) applied for Weibull 
parameters estimation is exact. However, for q=0.5 
Method 4 failed because (5) is limited by a small time 
interval. Here we suggest a better approximation for CIF. 
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Figure 6 – Improved approximation (Method 4+) of the g–renewal function for q=0.5. 
 

Equation (5) yields upper bound estimation for the g–
renewal function if Weibull shape parameter is greater 
than 1. The lower bound estimation can be derived from 
[16] in the following form: 
 

( ) ( ) ( )W t F t I t    (7) 
where  

0

( ) ( ),
t

qI t F dF x 
 

  1 )t q x     ( , ) 1 expqF t x qx   
  

i

1i

 
 

We consider the approximation for the g–renewal 
function as the average value of (5) and (7), which is rep-
resented in the Fig. 6 along with exact solution and ap-
proximation (5) for the case when q=0.5. We significantly 
expanded the time interval when the approximation is 
valid. 

We constructed the following iteration algorithm: 
 

1( ) i
it W      (8) 

 

where  is defined in the previous step of 
itereation as the follows: 

1i

 

  1
1 1 10.5 i

i i it F I 
     

 

 

and 0 0  . The latter equation implies that at the 
very first step we use approximation (5), then this result is 
improving during the iteration. 

 
Using the described iteration algorithm, we obtained 

the following estimates of the g–renewal parameters for 

the case of q=0.5: 
q =0.44, 

 =1.028, 
 =2.055 (c.f., 

previously obtained results 
q = 0.16, 

 =1.07, 
 =2.105). 

It is remarkable that in case of q=1, we also obtained a 

better solution 
q =0.78, =1.040, 

 =1.988 (c.f., previ-

ously obtained results 
q =0.720, 

 =1.043, 
 =1.993), 

because in our approximation of empirical data 1q   and 
formula (7) is more accurate than (5).  

Denoted by “+” in Fig. 4 is the improved approxima-
tion of Method 4 under q=0.5.  It is evident that the im-
proved approximation is practically indistinguishable 
from the exact solution in this case.  Denoted by “+” in 
Fig. 5 is the improved approximation under q=1, which 
makes it considerably better than the original Method 4 
and also better that Method 2. 

4. A case study 
Consider the cumulative operational time at failures 

on 6 repairable systems discussed by Mettas and Zhao [3] 
in Table 5. 

 



Table 5 – Cumulative failure arrival times on 6 repairable systems [3]. 
 

  System 1 System 2 System 3 System 4 System 5 System 6 
Start 0 0 0 0 0 0 
End 8760 5000 6200 1300 2650 500 

1 2227 773 901 411 689 106 
2 2733 1034 1290 1123 915  
3 3524 3011 2690    
4 5569 3121 3929    
5 5886 3624 4328    
6 5946 3758 4704    
7 6018  5053    
8 7203   5473       

 
Shown in Table 6 are the ML estimates of the GRP 

parameters (with the underlying Weibull distribution) 
obtained by Mettas and Zhao [3] based on the data in Ta-

ble 5 for various GRP models. Figure 5 shows the respec-
tive CIF’s corresponding to GRP parameter estimates in 
Table 6. 

 
Table 6 – MLE of GRP parameters based on Table 5 [3]. 

 
  ORP NHPP GRP (Kijima-I) GRP (Kijima-II) 
  0.0004 0.001 0.00018 0.000068 
  1.1409 1.113 1.23863 1.358201 
q  0 1 0.10599 0.552159 

 
Even though the estimation method used by Mettas 

and Zhao is different than ours, their results  are yet an-
other illustration of the conjecture we have proposed: the 
problem of estimating parameters of a g–renewal process 
is a mathematically ill–posed problem. The estimated 

CIF’s in Figure 6 are practically indistinguishable relative 
to each other despite the vast difference in probabilistic 
models and statistical estimates of those models’ parame-
ters shown in Table 6.  

 

 
 

Figure 7 – CIF’s corresponding to GRP parameter estimates in Table 6 [3]  
 

To demonstrate the efficiency of our methods, we 
have used the first 10 points of the Mettas & Zhao non-
parametric CIF (see Fig. 6) to estimate the parameters of 
the g–renewal function, obtain a corresponding extrapola-

tion and then compare it with the actual non-parametric 
estimate at the respective times. Note that unlike Mettas 
& Zhao, whose task was to parametrically fit the data and 
utilize the obtained model for interpolation, we are solv-



ing a much more challenging problem: use the initial 20% 
of the data to estimate the model, and the remaining 80% 
– to validate the model’s extrapolation. 

Shown in Table 7 are the 10 points of nonparametric 

estimates of the empirical CIF and the percent of the first 
failures corresponding to the data in Table 5.  Again, we 
will use the PFF only in Method 4. 

 
Table 7 – Nonparametric estimates of the empirical CIF and the percent of first failures corresponding to the first 

10 data points in Fig 7 
 

t 106 411 689 733 901 915 1034 1123 1290 2227 

CIF 0.167 0.333 0.533 0.733 0.933 1.133 1.333 1.533 1.733 1.983 

NFF 0.167 0.333 0.500 0.667 0.833 – – – – – 

 
Table 8 summarizes parameter estimates of the g–

renewal function obtained by the 3 discussed methods. It 
is interesting to note that in all methods, we obtained the 
estimates of Weibull shape parameter slightly less than 1. 
Strictly speaking, it is in agreement with the first 10 data 
points in Figure 6 -- corresponding piece of the curve 
concaves up in 0.4 < W(t) < 2.1. 
 

Table 8 – GRP parameter estimates based on the data 
in Table 7 

 

Method   
 

q  
Method 2 0.00115 0.8403 1.0 

Method 3 0.00134 0.9492 1.0 

Method 4 0.00108 0.9233 0.8 
 

Figure 8 shows the CIF extrapolations based on the 
GRP parameters in Table 8. Even though in the consid-
ered case study we restricted amount of data (10 points 
corresponding to only 6 systems), Method 3 performed 
quite well in the entire time interval. Method 2 works 
well in the interval of W(t) < 4.  Method 4 appears better 
than Method 2; it works in the interval of W(t) < 5. Note 
that q is close to 1 in this case, so approximation (5) 
works reasonably well. We were unable to apply Method 
4+ in this case, because it works only if Weibull shape 
parameter ≥ 
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Figure 8 – CIF extrapolation based on the GRP parameters in Table 8 

 
5. Conclusions 
We have shown that the extrapolation of the CIF of 

the g–renewal process is a mathematically incorrect in-

verse problem, in general case. For regularization of this 
problem, special methods and/or additional information is 
required. We suggested a regularization approach of sepa-



rating the estimation of the underlying TTF distribution 
from the estimation of the g–renewal restoration factor. 
The approach is based on the use of the TFF information, 
which is contained (explicitly or implicitly) in the g–
renewal process data. The conducted simulation studies as 
well as the considered practical case study confirmed the 
improved extrapolation accuracy of the proposed meth-
ods. 
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Аннотация 

 
СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ 

ПРОЦЕССA G-ВОССТАНОВЛЕНИЯ КАК 
ПЛОХО ОБУСЛОВЛЕННАЯ ОБРАТНАЯ 

ЗАДАЧА 
 

Кривцов В. В., Евкин А. М. 
 
Статистическое оценивание процессa g-

восстановления рассматривалось многими исследо-
вателями.  В данной статье мы показываем, что эта 
задача относится к классу плохо обусловленных, об-
ратных задач (для которых решение неуникально 
и/или очень чувствительно к статистическому раз-
бросу данных) и требует регуляризации по Тихонову. 
Вне зависимости от метода оценивания, сущест-
вующие методы обычно включают в соответствую-
щую целевую функцию параметры базового распреде-
ления одновременно с параметром восстановления. 
Мы же предлагаем регуляризировать эту задачу пу-
тем раздельного последовательного оценивания вы-
шеупомянутых параметров. Используя симуляцион-
ное исследование, мы показываем, что экстраполяци-
онная точность предложенного метода гораздо вы-
ше, чем у существующих. 

 
Анотація 

 
СТАТИСТИЧНЕ ОЦІНЮВАННЯ ПРОЦЕСУ 

G–ВІДНОВЛЕННЯ ЯК ПОГАНО 
ОБУМОВЛЕНА ОБЕРНЕНА ЗАДАЧА 

 
Крівцов В. В., Євкін А. М. 

 
Статистичне оцінювання процесу g–відновлення 

розглядалося багатьма дослідниками. У цій статті 
ми показуємо, що ця задача відноситься до класу по-
гано обумовлених, обернених задач (для яких рішення 
не унікальне і/або дуже чутливо до статистичного 
розкиду даних) і вимагає регулярізації по Тихонову. 
Незалежно від методу оцінювання, існуючі методи 
зазвичай включають у відповідну цільову функцію па-
раметри базового розподілу одночасно з параметром 
відновлення. Ми ж пропонуємо регуляризувати це 
завдання шляхом роздільного послідовного оцінювання 
вищезгаданих параметрів. Використовуючи дослі-
дження симуляції, ми показуємо, що екстраполяційна 
точність запропонованого методу набагато вища, 
ніж у існуючих. 
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