ДИНАМИКА КОНСОЛЬНОЙ БАЛКИ ПРИ НЕУПРУГОМ ПОПЕРЕЧНОМ УДАРЕ

Ольшанский В.П., д-р ф.-м.н., проф., Ольшанский С.В., к.ф.-м.н.

Харьковский национальный технический университет сельского хозяйства имени Петра Василенко

Проводится сравнение результатов расчета по двум теориям прогибов консольной балки при ударе падающим телом. Показано, что компактная формула Кокса позволяет с хорошей точностью определить коэффициент динамичности по прогибам балки при надлежащем учете коэффициента приведения массы балки к сечению удара. Предложено двойное неравенство для оценки коэффициента динамичности.

Постановка проблемы. При механическом ударе кратковременно возникают повышенные напряжения в соударяющихся телах, что может вызвать их разрушение, особенно при использовании хрупких материалов. Потому расчету элементов конструкций на удар уделяется должное внимание в научной и учебной литературе.

Краткий обзор публикаций. В современных изданиях по сопротивлению материалов [1,2,3] для вычисления коэффициента динамичности по прогибам тела, подвергнутого удару, в основном рекомендуют известную формулу Кокса [4,5], включая и ее упрощенный вариант, когда пренебрегают массой ударяемого тела. Но А.П. Филипповым установлено, что названная формула дает большие погрешности, когда масса ударяющегося тела M мала по сравнению с массой ударяемого тела M_0 [6,7]. Уже при $M/M_0 = 1/3$ погрешность больше 20%, если груз падает на квадратную пластину, подкрепленную основанием Винклера. Поэтому нужно иметь информацию о погрешности формулы Кокса при поперечном неупругом ударе тела по балке, чем и мотивирована эта работа.

Целью работы является определение погрешностей формулы Кокса путем сравнения результатов, к которым она приводит, с результатами расчета по теории Сен-Венана.

Основная часть работы. Для достижения поставленной цели выбираем консольную балку и предполагаем, что поперечный удар происходит по свободному краю, что является наиболее опасным вариантом удара.

Чтобы получить расчетные формулы по Сен-Венану, построим функцию Грина для уравнения колебаний балки, записанном в пространстве изображений по Карсону [8]:

$$\frac{d^4G}{dx^4} + \beta^2 p^2 G = 0$$
 (1)

283

Здесь $\beta^2 = \frac{\rho F}{EJ}$; ρF – погонная масса балки; EJ – ее изгибная жест-

кость; $x \in [0; l]$ – координата, отсчитываемая вправо от левого защемленного края балки длиной l; p – параметр интегрального преобразования; G = G(x, p) – изображение функции влияния.

Уравнение (1) решаем при граничных условиях:

$$G(0,p) = 0; \quad \frac{dG}{dx}\Big|_{x=0} = 0; \quad \frac{d^2G}{dx^2}\Big|_{x=l} = 0; \frac{d^3G}{dx^3}\Big|_{x=l} = -\frac{1}{EJ}.$$
 (2)

Решение уравнения (1), которое удовлетворяет первому и второму условиям в (2), имеет вид:

$$G(x, p) = A(shrx - sin rx) + B(chrx - cos rx).$$
(3)

Здесь $r = \sqrt{\beta \omega}$; $p = i\omega$; $i = \sqrt{-1}$; A, B – произвольные постоянные.

Удовлетворяя третьему и четвертому условиям в (2), находим постоянные A и B:

$$A = -\frac{1}{2r^{3}EJ} \frac{chrl + \cos rl}{1 + chrl \cos rl}; \quad B = \frac{1}{2r^{3}EJ} \frac{shrl + \sin rl}{1 + chrl \cos rl}.$$
 (4)

При x = l выражение (3), с учетом (4), преобразуется в:

$$G(l,p) = \frac{l^3}{EJ} \frac{\sin\zeta ch\zeta - sh\zeta \cos\zeta}{\zeta^3 \cdot (1 + ch\zeta \cos\zeta)}, \qquad (5)$$

где $\zeta = rl$.

При переходе от изображения прогиба балки к оригиналу потребуется предел

$$G(l,0) = \lim_{p \to 0} G(l,p) = \lim_{\zeta \to 0} G(l,\zeta) = \frac{l^3}{3EJ}.$$
 (6)

Согласно теории Сен-Венана [6,7] при неупругом ударе тела массой M со скоростью υ по свободному краю стержня изображение его прогиба в сечении удара равно:

$$Y(l,p) = \frac{M \cdot (g + p\upsilon)}{1 + M p^2 G(l,p)} G(l,p).$$

$$\tag{7}$$

Переход от (7) в пространство оригиналов проводим с помощью второй теоремы разложения. Получаем

$$y(l,t) = MgG(l,0) + M\sum_{K=1}^{\infty} \frac{(g+v p_K)G(l, p_K)}{\frac{d}{dp} [p+M p^3 G(l, p)]_{p=p_K}} e^{p_K t}.$$
(8)

Здесь *p_K* – корни трансцендентного уравнения:

$$1 + M p^{2}G(l, p) = 0.$$
(9)

Учитывая (6) и (9), выражение (8) преобразуем к виду

$$y(l,t) = \frac{Mg l^{3}}{3EJ} - \sum_{K=1}^{\infty} \frac{(g+\upsilon p_{K}) \cdot e^{p_{K}t}}{p_{K}^{2} \cdot \left[M p^{3} \frac{d}{dp} G(l,p) - 2\right]_{p=p_{K}}}.$$
 (10)

При вычислении производной из (5) по *р* учтем, что $\frac{d}{dp} = \frac{\zeta}{2p} \frac{d}{d\zeta}$. То-

гда:

$$\frac{d}{dp}G(l,p)\bigg|_{p=p_{K}} = \frac{l^{3}}{2EJ p_{K}\zeta_{K}^{4}} \bigg[\frac{2\sin\zeta_{K}sh\zeta_{K}}{1+ch\zeta_{K}\cos\zeta_{K}}\zeta_{K}^{2} + \frac{1}{\chi^{2}} - \frac{3}{\chi}\bigg].$$
(11)

При этом, согласно (9), ζ_{κ} являются корнями уравнения:

$$\frac{\sin\zeta ch\zeta - sh\zeta\cos\zeta}{1 + ch\zeta\cos\zeta} = \frac{1}{\chi\zeta},\tag{12}$$

в котором $\chi = M / M_0$; $M_0 = \rho F l$ – масса балки.

Используя (10) и (11), получаем выражение прогиба на краю балки при ударе:

$$y(l,t) = \frac{Mg l^3}{3EJ} - \sum_{K=1}^{\infty} \frac{g \cos(\omega_K t) - \upsilon \,\omega_K \sin(\omega_K t)}{\omega_K^2 \cdot \left[1 + \frac{\chi}{4} S(\zeta_K)\right]} \,. \tag{13}$$

Здесь
$$\omega_{\kappa} = \frac{\zeta_{\kappa}^2}{\beta l^2}$$
; $S(\zeta_{\kappa}) = 2\zeta_{\kappa}^2 \frac{\sin \zeta_{\kappa} sh \zeta_{\kappa}}{1 + ch \zeta_{\kappa} \cos \zeta_{\kappa}} + \frac{1}{\chi^2} - \frac{3}{\chi}$; ζ_{κ} – только по-

ложительные корни уравнения (12).

Чтобы упростить вычисление этих корней, положим:

$$\zeta_{K} = a_{K} - \varepsilon_{K}, \quad a_{K} = \frac{(2k-1)\pi}{2}, \quad k = 1, 2, \dots$$

и преобразуем (12) к виду

$$tg\zeta_{K} = \frac{\chi\zeta_{K} - \left(\sin a_{K}\cos\varepsilon_{K}ch\zeta_{K}\right)^{-1}}{1 + \chi\zeta_{K}th\zeta_{K}}$$

Отсюда следует простая итерационная формула

$$\varepsilon_{K}^{(n+1)} = \operatorname{arctg} \frac{\chi \zeta_{K}^{(n)} - \left(\sin a_{K} \cos \varepsilon_{K}^{(n)} \operatorname{ch} \zeta_{K}^{(n)}\right)^{-1}}{1 + \chi \zeta_{K}^{(n)} \operatorname{th} \zeta_{K}^{(n)}}, \qquad (14)$$

в которой $\varepsilon_K^{(n)} = a_K - \varepsilon_K^{(n)}, n = 0, 1, 2, ... -$ номер итерации.

Начальным приближением можно брать $\varepsilon_{K}^{(0)} = 0$.

Формула (14) позволяет с заданной точностью найти любое конечное число корней уравнения (12) в широком диапазоне изменения χ . Результаты расчетов для отдельных χ представлены в табл. 1.

Уравнение (12) является частотным уравнением свободных колебаний балки с сосредоточенной массой M на ее свободном крае [8]. Поэтому данные таблицы 1 можно использовать для вычисления этих частот, в том числе и консольной балки без сосредоточенной массы, когда $\chi = 0$.

k	Значения ζ_{κ}								
	$\chi = 0$	$\chi = 0, 2$	$\chi = 0, 4$	$\chi = 0, 6$	$\chi = 1$	$\chi = 2$			
1	1,87510	1,61640	1,47241	1,37567	1,24792	1,07620			
2	4,69409	4,26706	4,14443	4,08665	4,03114	3,98257			
3	7,85476	7,31837	7,21549	7,17252	7,13413	7,10265			
4	10,99554	10,40156	10,31781	10,28498	10,25662	10,23402			
5	14,13717	13,50670	13,43668	13,41021	13,38776	13,37012			
10	29,84513	29,13859	29,10089	29,08758	29,07664	29,06826			
20	61,26106	60,51531	60,49590	60,48925	60,48386	60,47978			
50	155,50883	154,73933	154,73145	154,72879	154,72665	154,72505			
100	312,58847	311,81104	311,80707	311,80573	311,80469	311,80386			

Таблица 1. Значения корней уравнения (12)

При расчете удара по теории Сен-Венана приходится применять компьютер, тогда как расчет максимального динамического прогиба балки по Коксу остается в рамках простейших вычислений.

Согласно формуле Кокса [6], максимальный динамический прогиб балки $y_g = \max y(l,t)$ равен

$$y_g = y_{CT} + \sqrt{y_{CT}^2 + \frac{v^2}{g} \frac{y_{CT}}{1 + k_0 / \chi}},$$
(15)

где, как прежде, $y_{CT} = Mg l^3 (3EJ)^{-1}$; k_0 – коэффициент приведения массы балки к сечению удара. Используя данные табл. 1, из равенства частот колебаний находим, что $k_0 = 3 \cdot (1,8751)^{-4} \approx 0,2427$. Это значение k_0 будем задавать в дальнейших расчётах.

Отметим, что в литературе по сопротивлению материалов встречаются и другие значения k_0 , например $k_0 = 33/140$.

От величины k_0 зависит значение коэффициента динамичности прогибов $K_g = y_g y_{CT}^{-1}$, поскольку, согласно (15),

$$K_{g} = 1 + \sqrt{1 + \frac{\upsilon^{2}}{g y_{CT}} \frac{1}{1 + k_{0} / \chi}}.$$
 (16)

Из выражения (16) следует, что коэффициент динамичности удовлетворяет неравенствам:

$$K_{1g} < K_g < K_{2g}, \tag{17}$$

в которых

$$K_{jg} = 1 + \sqrt{1 + \frac{v^2}{gy_{CT}} \frac{1}{1 + (2 - j)/\chi}}, \quad j = \overline{1, 2}.$$

Значение K_{1g} получаем, когда $k_0 = 1$, т.е. вся масса балки сосредоточена в сечении удара, а K_{2g} – когда $k_0 = 0$, т.е. полностью пренебрегаем этой массой.

Для оценки погрешностей формулы (15) проведены расчеты удара тела по стальной балке прямоугольного поперечного сечения с высотой сечения h = 0,06 м и шириной b = 0,02 м. Длина балки l была равной 1 м. Варьировали величины υ и χ . На рисунке нанесены графики y(l,t), вычисленные по (13) при $\chi = 0,4$ для трех значений υ .

Для этих исходных данных формула (15) дает соответственно $y_g = (3,37; 6,58; 9,79) \cdot 10^{-3}$ м, что хорошо согласуется с max y(l,t) на рисунке.

Рис. Графики y(l,t) при разных υ : 1, 2, 3 – υ = 1,2,3 м/с

В табл. 2 записаны значения коэффициента динамичности K_g , вычисленные при $\chi = 0,4$ по формуле (13) (числители) и по формуле (16) (знаменатели) для разных υ . Здесь также теория Кокса хорошо согласуется с тео-

рией Сен-Венана.

	1	тт	· · ·	r I	\mathcal{N}	I	-
υ, м/с	0,5	1,0	1,5	2,0	2,5	3,0	3,5
K	11,2	21,2	31,3	41,4	51,4	61,5	71,5
R_{g}	11,0	20,8	30,7	40,6	50,5	60,4	70,2

Таблица 2. Коэффициенты динамичности при $\chi = 0,4$ и разных υ

В табл. 3 указаны значения коэффициента динамичности K_g , вычисленные при $\upsilon = 2$ м/с и разных χ по формуле (13) (числители) и по формуле (16) (знаменатели).

Расхождения в результатам расчета незначительны в широком интервале отношений масс соударяющихся тел.

	1		g	1	1	70	
χ	0,01	0,05	0,1	0,3	0,5	1	2
K	66,1	58,0	53,5	44,6	38,5	29,3	22,2
8	64,1	59,6	55,2	44,1	37,8	29,5	22,2

Таблица 3. Значения K_{σ} при $\upsilon = 2$ м/с и разных χ

Для проверки выполнения неравенства (17) в табл. 4 указаны значения K_{1g} и K_{2g} .

	-		-8	-8 -		_	
χ	0,01	0,05	0,1	0,3	0,5	1	2
K_{1g}	32,6	32,0	31,3	28,8	26,9	23,4	19,3
K _{2g}	318,2	142,8	101,3	58,9	45,9	32,7	23,4

Таблица 4. Коэффициенты K_{1g} и K_{2g} при $\upsilon = 2$ м/с и разных χ

Расчёты подтверждают, что неравенству (17) удовлетворяют коэффициенты динамичности, вычисленные не только по теории Кокса, а и по теории Сен-Венана, которые представлены в табл. 3.

Выводы. Если ограничиться определением коэффициента динамичности по прогибам консольной балки, подвергнутой механическому удару, то инженерный расчет можно проводить по формуле Кокса в широком диапазоне изменения масс соударяющихся тел, не прибегая к сложным расчетам динамического изгиба балки по теории Сен-Венана.

Список использованных источников

- 1. Писаренко Г.С. Опір матеріалів / Г.С. Писаренко, О.Л. Квітка, Е.С. Уманський. К.: Вища школа, 2004. 655 с.
- 2. Корнілов О.А. Опір матеріалів / О.А. Корнілов. К.: Погос, 2003. 552 с.

- 3. Шкельов Л.Т. Опір матеріалів / Л.Т. Шкельов, А.М. Станкевич, Д.В. Пошивач. – К.: ЗАТ «Віпол», 2011. – 456 с.
- 4. Тимошенко С.П. Колебания в инженерном деле / С.П. Тимошенко. М.: Физматгиз, 1959. – 439 с.
- 5. Кильчевский Н.А. Теория соударений твердых тел / Н.А. Кильчевский. К.: Наукова думка, 1969. 247 с.
- 6. Филиппов А.П. Колебания механических систем / А.П. Филиппов. К.: Наукова думка, 1965. 716 с.
- 7. Филиппов А.П. Колебания деформируемых систем / А.П. Филиппов. М.: Машиностроение, 1970. 734 с.
- 8. Бабаков И.М. Теория колебаний / И.М. Бабаков. М.: Дрофа, 2004. 591 с.

Анотація

ИНАМІКА КОНСОЛЬНОЇ БАЛКИ ПРИ НЕПРУЖНОМУ ПОПЕРЕЧНОМУ УДАРІ

Ольшанський В.П., Ольшанський С.В.

Проводиться порівняння результатів обчислень прогинів консольної балки при ударі падаючим тілом. Показано, що компактна формула Кокса дозволяє з хорошою точністю визначити коефіцієнт динамічності по прогинам балки при належному урахуванні коефіцієнта зведення маси балки до перерізу удару.

Abstract

CANTILEVER BEAM DYNAMICS BY INELASTIC TRANSVERSE IMPACT

Olshanskii S.V., Olshanskii S.V.

A comparison of the results of calculation of deflections in the cantilever beam impact falling body. A compact Koks formula allows to a good accuracy to determine the coefficient of dynamic deflection of a beam with due regard to the coefficient of the reduced mass of the beam cross-section of the blow was shown.