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Abstract – Various replacement policies under Kijima’s general repair model with the underlying Weibull distribu-
tion function are studied via two efficient methods. The first one is based on our previously derived approximate for-
mula for the grenewal function; the second is an improved Monte Carlo method. These methods enable an in–depth, 
comparative analysis of the maintenance polices in question. An efficient algorithm is suggested for finding optimal 
preventive replacement times. The influence of restoration factor, including the deviation from a minimal repair as-
sumption, on the optimal solution is studied. A practical study illustration is provided. 

Index Terms – Grenewal process, optimal maintenance, Weibull distribution, Monte Carlo method. 
 

NOTATION 
Vn, Sn – virtual, real age of the system after repair n   
q – restoration (or repair effectiveness) factor 
t – time 
W(t) – grenewal function denoting the expected cu-

mulative number of failures 
f(t) – probability density function  
F(t) – cumulative distribution function 
λ, α – respectively, the scale, and the shape parame-

ters of Weibull distribution 
Г(x) – Gamma function 
μ, σ – the mean, and the standard deviation of the 

failure time distribution 
N – number of simulations 
a, b, c, , A, B, H, D – numerical constants 

0C  – replacement cost 

1C  – minimal repair cost 

Cq – corrective repair cost depending on restoration 
factor 

TC  – expected total cost per unit time 

T  – expected length of replacement cycle 
 
INTRODUCTION 
Even though maintenance optimization is of great 

practical importance, the vast majority of papers [1], [2], 
[3], [4], [7] were devoted only to two special cases of the 
repair model: 1) minimal repair, when a system is 
"same−as−old" following the repair, and 2) perfect repair, 
when the system is "good−as−new" after restoration. The 
generalized renewal process (GRP) was introduced in 
[11], [12], [13], and then developed in [5], [6].  In [12], 
[13] it was applied to the maintenance optimization prob-
lem with special underlying distribution functions includ-
ing the Gamma function, and some combination of expo-
nential functions, because they imply an easy way to ob-
tain the solution.  The most popular Weibull distribution 
function is considered in a few papers [5], [6]. We did not 
find, however, a comprehensive, systematic analysis of 
maintenance policies under the GRP model with the un-
derlying Weibull distribution function. We believe that 
the main reason is the complexity of the problem: it is 
required to solve complex g−renewal equations many 
times to obtain an optimal solution in a general case. We 
suggest two efficient methods for solving this problem, 

and provide detailed analysis of maintenance solutions 
with respect to different GRP parameters and mainte-
nance policies.  

The objective of this research was trifold: 1) to dem-
onstrate the efficiency of the Approximate and Improved 
Monte Carlo methods in solving the g–renewal equations 
with application to optimal maintenance problems; 2) to 
study the sensitivity of the g–renewal model (in particu-
lar, the sensitivity of the minimal and perfect repair as-
sumptions) to the value of the restoration factor in main-
tenance optimization; and 3) to comparatively analyze 
optimization policies under the probabilistic framework of 
the g–renewal process with an underlying Weibull distri-
bution function.  

A. Maintenance policies description and assumptions. 
We consider a system deteriorating with age in the 

infinite time horizon. It can be repaired according to the 
GRP model with cost , or replaced by a new one with 

cost . Both types of maintenance can be corrective (at 

the failure time), or preventive (at a scheduled time), cre-
ating four possible combinations. 

qC

0C

To prevent the entire degradation of the system in the 
infinite time horizon, we have to introduce periodic re-
placement in the maintenance process to set the age of the 
system to 0 at the end of each cycle. The optimization 
criterion is the expected average total cost per unit time 
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The total cost CT can be minimized by scheduling 

preventive maintenance and selecting different mainte-
nance policies, described for example in [1]. Following 
[2], [3], we consider 3 types of polices, which were intro-
duced first for the case of minimal repair.  

Policy 1:  Perform repairs up to age , and replace 
at age T [2]. 

T

In this case, the length of a cycle is constant, and the 
expected total cost per unit time can be defined as [3] 
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According to this policy, replacements are preformed 
periodically, and it is sufficient to define the renewal pro-
cess in the time interval 0 . The objective is to 

find an optimal value T , which minimizes (2). 
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Policy 2: Perform repairs for the first failures, 
and replace at the  failure. 
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where . The total cost is mini-

mized with respect to  in this model. This policy is 
more flexible compared to the previous one, and it yields 
a lower average total maintenance cost, which is proven 
in [7] for the minimal repair model. A simple formula and 
numerical examples are also provided in this case for the 
underlying Weibull failure time distribution. The policy is 
not studied in a more general case.  
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Policy 3: Perform repairs up to age , and replace 

at the first failure after  [5]. 

*
3T

*
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It is shown in [5] that this policy is optimal under a 
minimal repair model for the given values  and . 

This result is expanded for the case of the g−renewal pro-
cess in [4].  

0C 1C

In the general case of this policy, (1) should be used. 
In [11], the authors implicitly assumed that the cost of a 
cycle and the length of a cycle are s−independent, and 
therefore the following equation is considered 
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We will show the limitations of this formula using 

the Monte Carlo method.  
Policy 2 is more cost efficient than Policy 1, and Pol-

icy 3 is optimal given that both types of cost  and  

are fixed. In practice, however, the replacement in Policy 
1 may be less expensive because it is planned at a given 
time , and the unexpected down time can be signifi-
cantly reduced. We will study this case, and find the limi-
tations when Policies 2 and 3 are actually more efficient 
compared to the first one.  
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Obviously, the difference between these three poli-
cies depends on all GRP parameters (that is, parameters of 
the underlying distribution, and the restoration parame-
ter).  We did not find any systematic comparative studies 
of maintenance policies considering the case of the GRP 
with a Weibull underlying distribution. This analysis will 
be provided in Section III of the paper. 

The average cost of repair  (as well as the cost of 

replacement ) includes not only the costs of repair 

itself but also all costs resulting from the failure (e. g., the 
cost of down time, possible lost sales, idle labour, delays 
in logically dependent processes). For example, the ex-
pected down time can be calculated as 
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where  Q t  is the unavailability of the system at cur-

rent time point t. If the expected time to repair   is much 

less than the time to failure,   ( )Q t w t   [12], where 

( )w t d t( ) /W t d . Finally, the total down time can be 

represented as  TdT W  . Therefore, the correspond-

ing cost is proportional to W T , and can be included in 

(2). 

 

Solving the generalized renewal process equations, 
and in particular finding the g−renewal function  W t , is 

the core problem of maintenance optimization. 
 
B. Generalized renewal process. 
As discussed in [9] and [13], in repairable system re-

liability analysis, one could consider four different states 
to which a system can be repaired following a failure: 1) 
"good−as−new," 2) "same−as−old," 3) "bet–ter−than−old 
−but−worse−than−new," and 4) "worse−than−old." All of 
these states are usually modeled by a stochastic point 
processes. A general assumption, which is made when 
using a stochastic point process to model a repairable sys-
tem's failure occurrence, is that the time of the system's 
repair is negligibly small compared to its time to failure. 
This assumption is quite realistic in many applications; 
for example, consider 18 months to an automobile failure 
vs. 3 days (0.1 months) to its repair. 

Upon a failure, if a repairable system is restored to a 
"good−as−new" condition, and the time between system 
failures can be treated as an i.i.d. random variable, then 
the failure occurrence can be modeled by the Ordinary 
Renewal Process (ORP).  If upon a failure the system is 
restored to the "same−as−old" condition, then an appro-
priate model to describe the failure occurrence can be the 
Non−Homogeneous Poisson Process (NHPP). A more 
general model is the so−called Generalized Renewal Pro-
cess (GRP), which treats ORP and NHPP as special cases. 

The GRP or grenewal process, originally introduced 
by Kijima and Sumita [11], [13], has gained increasing 
popularity in modeling and analysis of recurrent events, 
specifically in reliability and maintainability applications. 
The GRP is introduced (Kijima Model 1) using the notion 
of virtual age: 

 
Vn = qSn .    (6) 

 
For q = 0, the age of the system after the repair is 

"re−set" to zero; this approach corresponds to the ORP. With 
q = 1, the system is restored to the "same−as−old" condition, 
which is modeled as a NHPP.  The case of 0 < q < 1 corre-
sponds to the intermediate "bet-
ter−than−old−but−worse−than−new" repair assump-
tion.Finally, with q  > 1, the virtual age is Vn > Sn, so that the 
repair damages (ages) the system to a higher degree than it 
was just before the respective failure, which corresponds to 
the "worse−than−old" repair assumption. As such, all four 
considered cases of q can be modeled by the GRP. 

Under the GRP, the expected number of events (fail-



ures) in (0, t] is given by a solution of the so−called 
grenewal function [13] 
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Note that g(t|0) = f(t). 
In this paper, we consider the most popular Weibull 

distribution with the cumulative distribution function 
(CDF) expressed by 
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in the time interval . The scale, and shape parame-
ters are restricted to the range 

0t 
0  , and 0  , respec-

tively, in general. We assume in addition that 1 

1

, 
which corresponds to an Increasing Failure Rate (IFR) 
(degrading system), and preventive maintenance leads to 
a decrease in the total cost in this case. We also put    
without loss of generality.  

The closed form solution of the grenewal equation 
does not exist, and numerical solutions are difficult to 
obtain. It is desirable to obtain the efficient algorithm in a 
maintenance optimization problem because obtaining the 
optimal length of the replacement cycle requires solving 
the g−renewal equation many times over. A comprehen-
sive list of works on solving the ordinary and the 
g−renewal equations can be found in [13].  In this paper, 
we consider two types of solutions: an improved Monte 
Carlo (MC) method, and an approximate formula for the 
g−renewal function. 

 
CALCULATION METHODS 
A. Monte Carlo method. 
A MC approach was introduced for solving the 

g−renewal problem in [9], and applied to the estimation 
of the expected number of repairs in warranty data analy-
sis [10]. This raw simulation is quite time consuming, if 
obtaining many solutions for different values of process 
parameters is required, for example in warranty claims 
forecasts, or maintenance schedule optimization. An im-
provement of MC methods was suggested in [11], and 
effectively implemented in fault tree analysis [12]. The 
main result of this approach can be applied to the mainte-
nance optimization problem as well. 

The GRP is represented in [12] as a continuous time 
semi−Markov chain, whose state space is defined as a set 
of states of a system between the i−th and (i+1)−th fail-
ures (i=0, 1, 2, ...). 
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where Pi, i+1(t) is probability of a transition from state 

i to state i+1 at a given time t under the condition that the 

system is in the i−th state. The simulation procedure is 
illustrated in Fig 1. To define the expected number of 
failures at observation time t  in each trial, we calculate 
the sum of the probabilities of the failures at the given 
time  for each subsequent time  immediately after the 

i−th repair. 

t iS

The first term of (9) can be written in the simple form 
 

0,1( ) ( )P t F t .         (10) 

 
It does not depend on the trial number, its variance is 

equal to 0, and therefore the suggested approach is much 
more accurate. 
 

 
 

Figure 1 – Simulation procedure according to (9) 
 

The implementation of (9) in the simulation proce-
dure is as follows. For each trial, and at each given time t, 
we consider all the failures that occurr at time Si < t. We 
have to put i > 0, because i=0 corresponds to the first 
term in (9). Each i−th time to failure ti at time Si (and 
corresponding vertical time Vi) is defined according to (6) 
and (8) by generating random numbers Fi  in the simula-
tion process  
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If necessary, the time to repair also can be included in 

the MC simulation. In this case, we consider Si as time 
immediately after the i−th repair. Then, we calculate the 
sum (9) of the corresponding probabilities of the transi-
tion to the next failure at the given time t 
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as it is shown in [12], the maximum required number of 
MC simulation trials is N=4000 to reach a reasonably 
high accuracy. It takes about 0.05sec to obtain the result 
in the interval  0 W t 10   on our computer having 4 

processors (2.51 GHz) and 6.0GB of RAM.  
B. Approximate solution for the renewal function. 
A simple approximate formula for the renewal func-

tion was suggested by the authors in [13]:  
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where  0 ,W t   is the renewal function correspond-
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ing to ORP, if q=0; 1( , )W t t   is the exact solution 

corresponding to a minimal repair assumption, if 1q  . 
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These formulae were tested against the MC method. 
The relative error did not exceed 2.6% in intervals 
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where , , 

and . 
0 1.112G 

0 0.D  
0 00.2176, 6A  

0   0.09,H  48

5  , and 0 . The formulae 

were efficiently applied to the warranty prediction prob-
lem. We will use them to define the optimal replacing 
time in the maintenance optimization problem.  We can 
expect that the accuracy of the calculation of the average 
total cost (2) will be even higher because of the increased 
calculation accuracy of W(t); the remaining terms in (2) 
are deterministic quantities, and have no uncertainty asso-
ciated with them. 

1q 

 
CALCULATION RESULTS 

Function 0 ,W t   is approximated with good accu-

racy using a two−point Padé function 
 
A. Maintenance Policy 1 
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where  2 2 22 / , /nB a A B      . Coeffi-

cients  are defined by a simple recursive procedure 

according to  
ka
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The result of calculations corresponding to Policy 1 
is shown in Tables I−IV for various values of GRP pa-
rameters and replacement cost . We assume corrective 

repair cost 
0C

1qC   in all cases. These results are obtained 

by approximate formulae (13)−(17), and the Monte Carlo 
method, respectively. The number of trials in the im-
proved MC method was 10,000, which guarantees the 
relative Standard Error (SE) of the method to be less than 

0.25%. Values of optimal replacement time  and the 

corresponding expected number of failures 

*T

 *W T  are 

also provided in Tables I−IV. 
 

 
Table I – Optimal maintenance cost (C0 = 5, α = 2) 

 
Restoration factor, q 1 0.9 0.8 0.7 0.5 0.3 0.1 
Approximation  4.472 4.325 4.166 3.993 3.588 3.061 2.433 
Monte Carlo 4.473 4.319 4.152 3.975 3.568 3.027 2.231 
Monte Carlo SE 8.5E−3 8.0E−3 7.5E−3 7.0E−3 6.0E−3 4.7E−3 3.0E−3 
Length of cycle, T* 2.216 2.411 2.517 2.659 3.102 4.254 7.497 
Number of failures, W(T*) 4.915 5.407 5.4472 5.573 6.077 7.883 11.72 
 

Table II – Optimal maintenance cost (C0 = 3, α = 2) 
 

Restoration factor, q 1 0.9 0.8 0.7 0.5 0.3 0.1 
Approximation  3.464 3.369 3.267 3.152 2.883 2.525 1.949 
Monte Carlo 3.472 3.378 3.274 3.146 2.863 2.504 1.939 
Monte Carlo SE 7.3E−3 6.9E−3 6.5E−3 6.3E−3 5.5E−3 4.6E−3 3.0E−3 
Length of cycle, T* 1.719 1.808 1.879 2.091 2.552 3.350 6.026 
Number of failures, W(T*) 2.969 3.113 3.156 3.578 4.312 5.397 8.690 

 
Table III – Optimal maintenance cost (C0 = 5, α = 5) 

 
Restoration factor, q 1 0.9 0.8 0.7 0.5 0.3 0.1 
Approximation  5.977 5.798 5.582 5.268 4.549 3.676 − 
Monte Carlo 5.976 5.787 5.559 5.262 4.521 3.607 2.389 
Monte Carlo SE 5.0E−3 5.0E−3 4.2E−3 4.5E−3 3.7E−3 2.9E−3 1.7E−3 
Length of cycle, T* 1.038 1.129 1.193 1.377 1.726 2.497 5.289 
Number of failures, W(T*) 1.200 1.596 1.633 2.244 2.808 4.010 7.636 



Table IV – Optimal maintenance cost (C0 = 3, α = 5) 
 

Restoration factor, q 1 0.9 0.8 0.7 0.5 0.3 0.1 
Approximation  3.973 3.898 3.815 3.709 3.276 2.781 − 
Monte Carlo 3.972 3.890 3.798 3.685 3.279 2.746 1.983 
Monte Carlo SE 2.9E−3 2.8E−3 2.5E−3 2.5E−3 2.7E−3 2.4E−3 1.5E−3 
Length of cycle, T* 0.937 0.992 1.047 1.156 1.487 2.167 4.407 
Number of failures, W(T*) 0.718 0.852 0.975 1.271 1.880 2.950 5.744 

 
The case of q=1 corresponds to the popular minimal 

repair model. Analyzing data from Tables I−IV, one can 
conclude that the model is not sensitive with respect to 
restoration factor q in the vicinity of q=1. For example, if 
the factor is changed from 1 to 0.9 (by 10%), the corre-
sponding optimal cost decreases approximately by 3%. The 
sensitivity declines if C0 decreases. Therefore, the most 
popular, simple minimal repair model is a good approxima-
tion for obtaining conservative estimation of the optimal 
cost, if the expected restoration factor is close to 1. 

Comparing the results obtained by the approximate 
and MC methods, we can see good agreement in the in-
terval of . If , we did not obtain a mini-

mum cost value using the approximate formulae because 
they are valid in the range 

0.3q  0.1q 

  5W T 

0 qC C

. However, we be-

lieve that  is not a practical case. If  is 

small, the g−renewal model is close to a perfect repair. In 
this case, it is more likely that  because, if 

0 qC C , 0q  q

q 0 , 

the perfect repair at failure can be considered as if re-
placement happened unexpectedly (not at a scheduled 
time).  

We also considered the sensitivity of the perfect re-
pair model with respect to restoration factor  for vari-

ous values of Weibull shape parameter 

q

 , and replace-
ment cost .  If  is smaller compared to  

( ), and the shape parameter is large, then the mini-

mal cost slightly depends on restoration factor . For 

example, if , 

0 qC C

0 0.5C 

0C qC

0q 
q

5 
934

5

, and , the minimal 

total cost  is reached at time value 

, when the expected number of failures is 

small , and the renewal process does not 

depend on , as one would expect in this situation. We 

obtained  if 

0q

min TC

9

 * 0.13

q

min 0TC 

0

0

.9

.

q

*T  0.67

W T

3 0.2  in this case. A cou-

ple of curves represent the other case when C0 0.8 , 

5   in Fig. 2. 
Curve 1 corresponds to 0.2q  , and has a minimum 

of 1.352 at , when . Curve 1' 

corresponds to perfect repair ( ).  

* 0.735T   * 0.194W T

0q 
It has a local minimum very close to the previous 

one; however, it also has a maximum, and then it slowly 
decreases with cycle time . Another couple of curves 2 
( ) and 2' ( ) correspond to the case 

T
0.2q  0q  0 0.5C  , 

2  . Curve 2 has a minimum of 1.30 at T , 

when . The total cost  is always de-

creasing over time if 

* 1.063

 *W T  0.876 TC

0q  , which means that preventive 

replacement is not needed in this case. Corrective re-
placement is more efficient even though it is more expen-
sive. 

 

 
 

Figure 2 – Total cost CT depending on length 
of replacement cycle T 

 
B. Maintenance Policy 2 
The result of the calculations is shown in Tables 

V−VIII for various parameter values of the maintenance 
process with imperfect repair, and periodic replacement. 
According to Policy 2, the "target" number of failures n, 
when the unit is replaced by a new one, and corresponds 
to the minimal total cost, is calculated using the MC 
method. The corresponding values of the expected cycle 

length  of the maintenance are also shown in Tables 
V−VIII.  

*T

Policy 2 turns out to be more efficient compared to 
the Policy 1. The difference in minimal cost is changing 
from 7.7% to 18% in our examples, corresponding to the 
minimal repair model. The difference is decreasing if the 
restoration factor is decreasing. This comparison is made 
under the assumption that a periodical corrective re-
placement after the n−th failure in Policy 2 has the same 
cost as a scheduled preventive replacement in Policy 1. 
However, typically the scheduled maintenance cost is less 
expensive, and therefore Policy 1 can be more efficient. 

We suggest also an approximate solution for Policy 2 
based on previous calculations from Tables I−IV.  n can 
be obtained as the closest integer to the expected number 

of failures  *W T , corresponding to optimal solution 

according to Policy 1. These numbers are represented in 

Tables V−VIII in separated rows, and denoted as . In 
most cases, the numbers in the tables coincide with n. 
When they are different, we calculated the difference be-
tween the exact and approximate values of total cost. If 

*n

2  , this difference did not exceed 1%. If 5  , there 
is only one case with different values, when 0C 3 , 

0.7q  .  The difference in total cost is only 1.8% in this 

case.  
To calculate approximate total cost based on data 

from Tables I−IV, we can suggest (18) instead of (3): 
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where  and  are values from Tables I−IV.  

Data, corresponding to this formula, are shown in the first 
rows of Tables V−VIII. 

 *W T *T

They provide lower bound estimation of the exact so-
lution of Policy 2. The upper bound can be obtained from 

Tables I−IV. In addition, we have two cases when the 
length of the cycle in formula (3) can be calculated di-
rectly. For the minimal repair model ( ), we have 1q 

   1/ /nT n     n . If  (perfect repair), the 

length of the cycle is equal to n times of the Mean Time 
to Failure (MTTF) of the Weibull distribution 

0q 

 1 1/nT n    . 

 
Table V – Optimal maintenance cost (C0 = 5, α = 2) 
 

Restoration factor,  q 1 0.9 0.8 0.7 0.5 0.3 0.1 

Approximation  4.023 3.9017 3.7533 3.600 3.249 2.793 2.096 
Monte Carlo 4.128 3.992 3.846 3.690 3.3223 2.854 2.135 
n  5 5 5 5 6 8 11 

*n  5 5 5 6 6 8 12 

Length of cycle,  *T 2.18 2.255 2.340 2.439 3.010 4.204 7.025 

 
Table VI – Optimal maintenance cost (C0 = 3, α = 2) 

 
Restoration factor,  q 1 0.9 0.8 0.7 0.5 0.3 0.1 

Approximation  2.891 2.827 2.7440 2.667 2.473 2.208 1.774 
Monte Carlo 3.010 2.935 2.854 2.767 2.563 2.275 1.817 
n  2 3 3 3 4 5 8 

*n  3 3 3 4 4 5 9 

Length of cycle,  *T 1.329 1.704 1.752 1.807 2.341 3.077 5.50 

  
Table VII – Optimal maintenance cost (C0 = 5, α = 5) 

 
Restoration factor,  q 1 0.9 0.8 0.7 0.5 0.3 0.1 

Approximation  5.010 4.957 4.7217 4.534 3.9443 3.2078 2.200 
Monte Carlo 5.435 5.255 5.040 4.806 4.164 3.368 2.282 
n  1 2 2 2 3 4 8 

*n  1 2 2 2 3 4 8 

Length of cycle,  *T 0.920 1.142 1.190 1.248 1.681 2.375 5.258 
 

Table VIII – Optimal maintenance cost (C0 = 3, α = 5) 
 

Restoration factor,  q 1 0.9 0.8 0.7 0.5 0.3 0.1 

Approximation  3.112 3.114 3.045 3.082 2.7856 2.406 1.822 
Monte Carlo 3.262 3.262 3.262 3.204 2.875 2.4692 1.857 
n  1 1 1 2 2 3 6 

*n  1 1 1 1 2 3 6 

Length of cycle,  *T 0.920 0.920 0.920 1.248 1.391 2.025 4.308 

 
C. Maintenance Policy 3 
The main result of our calculations is represented in 

Tables IX−XII for various values of replacement cost , 

Weibull shape parameter 
0C

 , and restoration factor . All 

calculations are completed by the MC method using (4) 
(rows in the Tables with the name “Approximation”), and 
(1) (rows under the name “Monte Carlo”). We observed a 
relatively small difference between these data. The maxi-
mum of the difference is about 2.7%, and corresponds to a 
minimal repair model with  in our examples. The 

difference is decreasing when the restoration factor is 

decreasing, and does not depend on the shape parameter. 
In addition, in these tables, we provided the following 
calculation results: Monte Carlo Standard Error (SE), time 
interval Tq

0 3C 

3
* defined by Policy 3, and the expected length 

of replacement cycle T* corresponding to the optimal 
maintenance cost. 

Analyzing data from these tables, we can conclude 
that the minimal repair model is also not sensitive to res-
toration factor q. If the factor is changed from 1.0 to 0.9 
(by 10%), the corresponding optimal cost decreases by 
3% at most in our examples, when , 0 5C  2  . 



Table IX – Optimal maintenance cost (C0 = 5, α = 2) 
 

Restoration factor, q 1 0.9 0.8 0.7 0.5 0.3 0.1 
Approximation  4.030 3.909 3.777 3.622 3.271 2.821 2.123 
Monte Carlo 4.073 3.941 3.801 3.647 3.290 2.838 2.127 
Monte Carlo SE 9.7E−3 9.2E−3 8.6E−3 8.0E−3 6.8E−3 5.4E−3 3.2E−3 
T3

* 1.914 2.021 2.198 2.304 2.765 3.368 7.090 
Length of cycle, T* 2.147 2.260 2.440 2.559 3.045 3.696 7.464 
 

Table X – Optimal maintenance cost (C0 = 3, α = 2) 
 

Restoration factor, q 1 0.9 0.8 0.7 0.5 0.3 0.1 
Approximation  2.893 2.837 2.769 2.694 2.503 2.240 1.804 
Monte Carlo 2.975 2.905 2.830 2.743 2.538 2.258 1.809 
Monte Carlo SE 9.4E−3 9.0E−3 8.5E−3 7.9E−3 6.8E−3 5.3E−3 3.0E−3 
T3

* 1.347 1.383 1.560 1.631 1.914 2.694 4.892 
Length of cycle, T* 1.656 1.702 1.870 1.955 2.262 3.056 5.317 

 
Table XI – Optimal maintenance cost (C0 = 5, α = 5) 

 
Restoration factor,  q 1 0.9 0.8 0.7 0.5 0.3 0.1 

Approximation  5.215 5.102 4.935 4.709 4.113 3.340 2.276 
Monte Carlo 5.285 5.146 4.969 4.736 4.126 3.347 2.277 
Monte Carlo SE 9.1E−3 8.3E−3 7.5E−3 6.7E−3 5.3E−3 3.6E−3 1.9E−3 

*
3T  0.881 0.955 1.065 1.175 1.579 2.2403 4.995 

Length of cycle,  *T 1.060 1.121 1.225 1.346 1.750 2.447 5.260 

 
Table XII – Optimal maintenance cost (C0 = 3, α = 5) 

 
Restoration factor,  q 1 0.9 0.8 0.7 0.5 0.3 0.1 

Approximation  3.225 3.201 3.165 3.099 2.846 2.453 1.852 
Monte Carlo 3.311 3.267 3.207 3.126 2.870 2.461 1.852 
Monte Carlo SE 7.0E−3 6.6E−3 6.0E−3 5.4E−3 4.4E−3 3.2E−3 1.8E−3 

*
3T  0.734 0.808 0.845 0.918 1.175 1.726 3.820 

Length of cycle,  *T 0.994 1.036 1.070 1.141 1.435 1.986 4.131 

 
The difference declines if  decreases.   0C

Comparing calculation results for Policies 1 and 3, we 
conclude that Policy 3 is the most efficient in the case of 
the minimal repair model. The difference in the minimal 
cost changes from 9% to 17% in our examples. It is in-
creasing if the periodical replacement cost is declining, and 
the Weibull shape parameter increases. However, in Policy 
1, replacement is considered as preventive maintenance at 
the scheduled time, and can be less expensive than the cor-
rective maintenance in Policy 3 at the time of failure. Our 
calculations show that, if the difference in replacement cost 
between the two considered cases is greater than 20%, Pol-
icy 1 is more efficient. In each particular practical case, an 
appropriate policy should be selected.   

All results of the calculations show that Policy 3 is 
the most efficient among the considered three, as it is 
proven in [13] for the general case. However, the differ-
ence between Policies 3 and 2 is small. Its maximum was 
2.8% for minimal repair when , 0 5C  5.   

Comparing calculation results for T3
* corresponding to 

Policy 3 and optimal length of cycle T* from Tables I−IV, 
we derived that the ratio almost does not depend on restora-

tion factor q or shape parameter  α. It can be represented as 
 

*
3T kT * ,   (19) 

 
where coefficient k depends on replacement cost C0. 

If 0 3C  , then 0.8k  ; if , then . 0 5C  0.87k 
We approximated this logical dependence by a linear 

function 00.695 0.035k C  , and tested it against the 

MC method according to data from Tables IX−XII. The 
difference in the calculation of minimal total cost was not 
greater than 0.35%. Therefore, (19) yields a good ap-
proximation for optimal time T3

* of Policy 3. 
In all the above calculation examples, corrective re-

pair cost  and replacement cost CqC 0 did not depend on 

time or on the restoration factor. More general, practical 
cases will be considered in Section IV.  

D. Procedure of finding optimal solution 
Eventually, we implemented the described methodol-

ogy in software which allows us to calculate optimal re-
placement times according to a maintenance policy se-
lected by the user. At the first stage of the calculation, we 



use the approximate formulae corresponding to Policy 1. 
If Policy 2 or 3 is selected, then (18) and (19) are used in 
addition. This approximation was used as a first step. 
Next, a more accurate solution is obtained using the MC 
method.  Only about 20 additional steps of the MC calcu-
lation are required to obtain an accurate optimal solution. 
We used multithreading  in our software, which decreased 
the calculation time by about 4 times on our computer 
having 4 processors. It takes less than 1 second to calcu-
late the final result. Because the optimization in question 
is done with respect to just one parameter, any optimiza-
tion method can be used.  We have used the method of 
gradient decent. 

 
CONCLUSIONS 

 
In this paper, we studied three of the most popular 

maintenance policies allowing us to define the optimal 
time to replace the unit with a new one. The failure proc-
ess is described by the g−renewal Kijima model under the 
Weibull failure−time distribution function. The difficulty 
of the g–renewal process is that its g–renewal equation 
does not have a closed form solution in this case.  We 
proposed two efficient solutions (an improved Monte Car-
lo method, and our previously obtained approximate solu-
tion), which enable an in–depth comparative analysis of 
the maintenance polices.  The policies are compared for 
various values of the model parameters. The sensitivity of 
each model is studied with respect to the restoration fac-
tor. Practical cases are considered to show both the impor-
tance of maintenance optimization using a g−renewal 
model and the efficiency of the suggested Monte Carlo 
and approximate methods. The obtained calculation re-
sults can be used as a benchmark for developing other 
approximate methods. 
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Анотація 

 
ПОРІВНЯЛЬНИЙ АНАЛІЗ ОПТИМАЛЬНИХ 
ІНТЕРВАЛІВ ПЛАНОВО-ПОПЕРЕДЖУВАЛЬ-

НИХ РЕМОНТІВ У РАМКАХ ПРОЦЕСУ 
G-ВІДНОВЛЕННЯ З БАЗОВИМ РОЗПОДІЛОМ 

ВЕЙБУЛЛА 
 

Кривцов В. В., Євкін О. Ю. 
 
Досліджуються два оптимальні методи планово-

попереджувальних ремонтів у рамках g-відновлення з 
базовим розподілом Вейбулла. Перший базується на 
раніше отриманій наближеній формулі для g-
відновлення, а другий є вдосконаленим методом Мон-
те-Карло. Ці методи дозволяють поглибити порівня-
льний аналіз політик ремонту. Пропонується ефек-
тивний алгоритм для знаходження оптимального 
періоду для виконання планово-попереджувальних 
ремонтів. 

 
Аннотация 

 
СРАВНИТЕЛЬНЫЙ АНАЛИЗ ОПТИМАЛЬНЫХ 

ИНТЕРВАЛОВ ПЛАНОВО-ПРЕДУПРЕДИ-
ТЕЛЬНЫХ РЕМОНТОВ В РАМКАХ ПРОЦЕССА 

G-ВОССТАНОВЛЕНИЯ С БАЗОВЫМ 
РАСПРЕДЕЛЕНИЕМ ВЕЙБУЛЛA 

 
Кривцов В. В., Евкин A. Ю. 

 
Исследуются два оптимальных метода планово-

предупредительных ремонтов в рамках g-
восстановления с базовым распределением Вейбулла. 
Первый основывается на ранее полученной формуле 
для g-восстановления, а второй является усовершен-
ствованным методом Монте-Карло. Эти методы 
позволяют углубить сравнительный анализ политик 
ремонтов. Предложен эффективный алгоритм для 
нахождения оптимального периода для выполнения 
планово-предупредительных ремонтов.  
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