дозі 100 кг/га - 87,5%. Застосування інших форм добрив не сприяло вищій збереженості рослин.

У гібрида Брігга найвища збереженість рослин на рівні 89,1 % була на варіантах з застосуванням Дюра СОП та Реновешн Фуерза Еліт в дозі 100 кг/га. Інші форми добрив не сприяли збільшенню збереженості рослин, а на варіанті без добрив – збереженість у цього гібрида становила 84,9 %.

УДК 633.511:575.

Сейтназарова Т. Е., д-р философии по с.-х. наукам Научно-исследовательский институт генетических ресурсов растений e-mail: seytnazarovatillahan@gmail.com

ПРОЯВЛЕНИЕ ХОЗЯЙСТВЕННО-ЦЕННЫХ ПРИЗНАКОВ У ЛИНИИ ХЛОПЧАТНИКА, СОЗДАННЫХ МЕТОДОМ ГЕОГРАФИЧЕСКОЙ ОТДАЛЕННОЙ ГИБРИДИЗАЦИИ

Продуктивность хлопчатника является признаком, сложным определяемем количеством коробочек на одном растения и массой хлопкасырца одной коробочки. Кроме того, продуктивность зависит от ряда факторов таких как скороспелость, устойчивость растений к болезням и вредителям, различные агротехнические мероприятия. Как и неправильные агротехнические мероприятия в период вегетации, высокая температура в период цветения растения также может привести к гибели урожая [1, с. 25]. Наследование признака продуктивности, как и других количественных признаков, имеет характер, т.е. проявление того полигенный одного И же признака контролируется несколькими генами. [2, с. 43-47].

Опыты проводились на центральном опытном поле НИИ селекции, семеноводства и агротехнологии выращивания хлопка. Объектом исследования служили интрогрессивные формы и зарубежные коллекционные сорта хлопчатника с высоким выходом волокна.

Среди изученных линий высокий показатель количества коробочек на одном растении отмечен у линии $F_5(JI-578xS-489)-25,7$ штук. Среди изученных семи линии у четырех количество коробочек было свыше 22 штук. Самый низкий показатель наблюдался у линии $F_5(JI-TxS-6003)$, составил 18,2 штук. Высокие показатели количества коробочек на одном растений были отмечены у скороспелых линиях, что означает наличие положительной связи между этим двух признаками.

Показатели массы хлопка-сырца одной коробочки у изучаемых линиях были в пределах от 5,4 г до 6,6 г. Если обратить внимание на табличные данные, у линиях где количества коробочек на одном растений относительно высоко, таких как F_5 (Л-578хS-6082), F_5 (Л-578хS-489) показатели массы хлопка-сырца одной коробочки низкий, и наоборот. Это свидетельствует о том, что наличие отрицательной связи между этими признаками.

У изучаемых линий показатели выхода волокна было значительно выше,

чем у стандартных сортов. У двух линиях F_5 (Л-ТхS-6593, F_5 (Л-ЮхS-6596) имели выход волокна более 39%. У линии F_5 (Л-578хS-489) этот показатель составил 36,2%, необходима подчеркнуть, что количества коробочек на одном растений этой линии относительно высоко (25,7 штук). То есть отрицательные корреляции между этими признаками затрудняют воплощение компонентов продуктивности в одному генотипу.

Масса 1000 штук семян была у изучаемых линий от 118,5 г F_5 (Л-578хS-489) до 136 г F_5 (Л-ЮхS-6596), а у стандартных сортов эти показатели были равно 120 г. Масса 1000 штук семян у двух линиях было выше 130 г, у трех выше 120 г. Выход волокна было относительно высоким у линий F_5 (Л-ТхS-6593), F_5 (Л-ЮхS-6596) с высокой массой 1000 штук семян. Это свидетельствует об эффективности проведенной отбора. То есть в результате правильного отбора отрицательный связи между признаками может изменяться на положительную.

Основными параметрами, определяющими качество волокна хлопчатника, является его длина, микронейр и удельной разрывной нагрузки [3; с. 31]. У изучаемых линиях длина волокна распологалась в пределах 1,15-1,24 дюйма. Из семи изученных линий у трех имели длину волокна более 1,2 дюйма, а двух имели длину волокна более 1,18 дюйма. В опытах относительное увеличение длина волокна было достигнуто в результате скрещивания интрогрессивных линий, полученных с присуствием дикого вида хлопчатника G.trilobum S. Показатели микронейра находился в оптимальных пределах у всех изученных линий (4,3-4,7). Из семи изученных линии у четырех удельной разрывной нагрузки было выше 38. Высокие показатели по этому признаку наблюдались у линии $F_5(\Pi-TxS-2515)$ – 40,3 гс/текс, $F_5(\Pi-TxS-6593)$ – 41,4 гс/текс. У стандартных сортов этот показатели равнялся 29,4 и 30,2 гс/текс.

Таблица — Показатели параметров качества волокна и компонентов продуктивности у географических отдаленных линии хлопчатника

Родительские формы и линии	Количество коробочек на одном растении, штук	Масса хлока- сырца одной коробочек, г	Выход волокна,%	Масса 1000 штук семян , г	Длина волокна, дюйм	Микронейр	Удельной разрывной нагрузки
St.Наманган	25	5,2	36,2	120	1,15	4,9	29,4
St.C-6524	24,9	5,5	33,5	120	1,17	4,8	30,2
Л-578	18,5	5,1	40,6	114	1,26	4,5	32,7
Л-Т	21	4,8	37,9	126	1,25	4,7	38,5
Л-Ю	18	6,1	37,5	140	1,25	4,4	34,5
S-6003	18,2	6,6	38,4	131	1,25	4,2	34,2
S-2515	23	6,1	41,0	106	1,10	4,4	33,5
S-489	24,7	6,4	36,8	117	1,13	5,1	33,2
S-6082	18	5,2	39,4	134	1,10	4,4	33,5
S-6593	25,3	5,4	38,4	116	1,20	4,1	30,3
S-6596	19,4	6,4	36,5	102	1,07	4,6	39,4
Л-578 x S-6003	18,6	6,6	38,2	124,4	1,16	4,5	37,5

Л-Т х S-6003	18,2	6,2	37,9	127	1,19	4,6	36,0
Л-Т x S-2515	19,6	5,8	37,6	120,6	1,18	4,5	40,3
Л-578 х S-6082	23,6	5,7	37,1	118,6	1,15	4,7	38,2
Л-578 x S-489	25,7	5,4	36,2	118,5	1,24	4,3	36,4
Л-Т х S-6593	23,5	5,9	39,5	134	1,22	4,3	41,4
Л-Ю х S-6596	22,6	5,8	39,2	136	1,21	4,5	38,0
ЭКФ _{0,5}	6,29	0,77	1,42	3,23	0,05	0,07	2,8

В результате исследований выделены линии с комплексом хозяйственноценных признаков и свойств, в частности, линии F_5 (Л-ТхS-6593) количеством коробочек на одном растении 23,5 штук, массой хлопка-сырца одной коробочек 5,9 г, выходом волокна 39,5%, массой 1000 штук семян 134 г, длиной волокна 1,22 дюйм, микронейром 4,3, удельной разрывной нагрузки 41,4 гс/текс и линия F_5 (Л-ЮхS-6596) количеством коробечек на одном растений 22,6 штук, массой хлопко-сырца одной коробочек 5,8 г, выходом волокна 39,2%, массой 1000 штук семян 136 г, длиной волокна 1,21 дюйм, микронейром 4,5, удельной разрывной нагрузки 38,0 гс/текс.

Список литературы

- 1. Дедова Ю.И. Скрещиваемость отдаленно-географических форм хлопчатника создание доноров для селекции: Автореф. дисс. ...канд. с.-х. наук: 06.01.05. Астрахань, 2009. 25 с.
- 2. Симонгулян Н.Г., Мухамедханов С.Р., Шафрин А.Н. Генетика, селекция и семеноводство хлопчатника. Ташкент: Ўқитувчи, 1974. С. 34-214.
- 3. Худайкулиев А. Селекция хлопчатника рода Gossypium на качество волокна. Ашхабат: Ылым, 1976. 205 с.

УДК 631.894

Сендецький В. М.¹, д-р с.-г. наук, голов. наук. співроб., Мельничук Т. В.², канд. с.-г. наук, ст. наук. співроб., Туць Л. І.², мол. наук. співроб., Матвійчук О. В.³, голов. інженер-ґрунтознавець ¹Інститут сільського господарства Карпатського регіону НААН ²Прикарпатська державна сільськогосподарська дослідна станція Інституту сільського господарства Карпатського регіону НААН ³Івано-Франківська філія державної установи «Інститут охорони ґрунтів України» е-mail: vermos2011@ukr.net

ОСОБЛИВОСТІ ЗАСТОСУВАННЯ ДЕСТРУКТОРА ВЕРМИСТИМ-Д У СУЧАСНОМУ ЗЕМЛЕРОБСТВІ

Післяжнивні рештки сільськогосподарських культур — це потужні джерела поповнення ґрунту поживними елементами та збагачення ґумусу, що сприяє отриманн високоякісної сільськогосподарської продукції.

У грунті продукти розкладаня соломи (кислоти) помітно інгібують ріст рослин. Фітотоксичний ефект продуктів розкладання проявляється затриманням 268