К ПОСТРОЕНИЮ МОДЕЛИ ДИНАМИКИ ПУЗЫРЬКОВОЙ ПСЕВДООЖИЖЕНОЙ ЗЕРНОВОЙ СМЕСИ ПО СТРУКТУРНОМУ ТРЕХМЕРНОМУ ВИБРОРЕШЕТУ

Тищенко Л.Н., д.т.н., проф., Харченко С.А. к.т.н., доц., Абдуев М.М. к.т.н., доц.

Харьковский национальный технический университет сельского хозяйства имени Петра Василенко

В статье определены направления решений уравнений динамики пузырьковых псевдоожиженых зерновых смесей на виброрешетах в трехмерном виде.

Постановка проблемы. Полученные уравнения динамики псевдоожиженой пузырьковой зерновой смеси (3C) по структурному виброрешету в трехмерном виде [1, 2] имеют сложный вид и их решение в таком виде затруднительно.

Цель работы: определение направления решений уравнений трехмерной модели динамики пузырьковой зерновой смеси по виброрешету с учетом структурности решет и свойств смеси.

Основной материал.

В результате исследований [2] получено поле скорости \vec{V} 3C, рассматриваемое как пузырьковая псевдожидкость, которое удовлетворяет уравнениям:

$$\rho \left(\frac{\partial \vec{V}}{\partial t} + (\vec{V}, \nabla) \vec{V} \right) = -\nabla P + \mu \Delta \vec{V} + \rho \vec{f}, \qquad (1)$$

$$div\vec{V} = 0, (2)$$

где: μ - эффективный коэффициент динамической вязкости [3],

Р - избыточное давление в псевдожидкости,

 $ec{f}$ - внешняя сила, действующая на единицу массы псевдожидкости (в качестве силы выбираем силу тяжести):

$$\vec{f} = g \sin \theta \vec{e}_1 - g \cos \theta \vec{e}_3, \tag{3}$$

 $\vec{e}_{\scriptscriptstyle I}, \vec{e}_{\scriptscriptstyle 2}, \vec{e}_{\scriptscriptstyle 3}$ - орты декартовой системы координат $x_{\scriptscriptstyle I}, x_{\scriptscriptstyle 2}, x_{\scriptscriptstyle 3}$.

Принимаем краевые и начальные условия [4]:

- на поверхности структурного виброрешета и свободной поверхности псевдожидкости:

$$\vec{V}\big|_{t<0} = 0, \quad P\big|_{t<0} = 0;$$
 (4)

- на свободной поверхности псевдожидкости $(x_3 = h)$ избыточное давление P и тензор напряжений $(\sigma_{ij})_{i=1}^3$:

$$P\big|_{x_3=h} = 0, \quad \sigma_{ij}\big|_{x_3=h} = 0, \quad i, j = 1, 2, 3;$$
 (5)

- тензор напряжений:

$$\sigma_{ij} = -P\delta_{ij} + \mu \left(\frac{\partial V_i}{\partial x_j} + \frac{\partial V_j}{\partial x_i} \right); \tag{6}$$

- на свободной поверхности псевдожидкости поле скорости:

$$\left(\frac{\partial V_i}{\partial x_j} + \frac{\partial V_j}{\partial x_i} \right) \bigg|_{x_i = h} = 0, \quad i, j = 1, 2, 3;$$
(7)

- на поверхности структурного виброрешета, которое совершает гармонические колебания вдоль оси x_1 усредненная скорость:

$$\vec{V}_{cp} = \frac{1}{S} \iint \vec{V}(x_1, x_2, x_3, t) dx_1 dx_2,$$
 (8)

где: S - площадь поверхности виброрешета;

- на поверхности виброрешета $(x_3 = 0)$:

$$\vec{V}_{cp}\Big|_{x_s=0} = A\omega\sin\omega t \vec{e}_I; \qquad (9)$$

- компонента скорости $V_3 = (\vec{V}, \vec{e}_3)$ на отверстиях виброрешета совпадает с некоторой средней скоростью U_0 , а вне отверстий обращается в нуль:

$$V_{3}|_{x_{3}=0} = U_{0} \begin{cases} I, & (x_{1}, x_{2}) \in \bigcup_{P=1}^{N} S_{P}, \\ 0, & (x_{1}, x_{2}) \notin \bigcup_{P=1}^{N} S_{P}. \end{cases}$$

$$(10)$$

где: $\bigcup_{P=1}^{N} S_{P}$ - множество отверстий на базовой ячейке виброрешета.

Таким образом, начально-краевая задача (1) - (10) моделирует процесс движения слоя пузырьковой псевдожидкости (3С с пузырьками) вдоль плоской поверхности виброрешета, совершающего гармонические колебания.

Следующий шаг в построении решения задачи (1) – (10) состоит в применении обратного преобразования Лапласа к функциям:

$$\overline{V}_{mn}^{I} = \frac{i2\pi n}{l_{1}^{2}l_{2}} F_{mn}(q_{1}x_{3}), \quad \overline{V}_{mn}^{2} = \frac{i2\pi m}{l_{1}^{2}l_{2}^{2}} F_{mn}(q_{1}x_{3}), \tag{11}$$

$$\overline{V}_{mn}^{3} = \frac{U_{0}B_{mn} \left[2ch(\lambda_{mn}(h - x_{3})) - \left(2 + \frac{q}{v\gamma_{mn}^{2}} \right) ch(\gamma_{mn}(h - x_{3})) \right]}{l_{1}l_{2}q \left[2ch(\lambda_{mn}h) - \left(2 + \frac{q}{v\gamma_{mn}^{2}} \right) ch(\gamma_{mn}h) \right]},$$
(12)

$$\overline{P}_{mn} = -\frac{U_0 B_{mn} \rho \left(2 + \frac{q}{v \gamma_{mn}^2}\right) sh(\gamma_{mn}(h - x_3))}{l_1 l_2 \gamma_{mn} \left[2 ch(\lambda_{mn} h) - \left(2 + \frac{q}{v \gamma_{mn}^2}\right) ch(\gamma_{mn} h)\right]},$$
(13)

$$F_{mn}(q,x_3) = \frac{U_0 B_{mn} \left[2 \left(2\gamma_{mn} + \frac{q}{v\gamma_{mn}^2} \right) sh(\gamma_{mn}(h-x_3)) - 2\lambda_{mn} sh(\lambda_{mn}(h-x_3)) \right]}{q\gamma_{mn}^2 \left[2ch(\lambda_{mn}h) - \left(2 + \frac{q}{v\gamma_{mn}^2} \right) ch(\gamma_{mn}h) \right]}, \tag{14}$$

при

$$\overline{V}_{00}^{3} = \frac{U_{0}B_{00}}{l_{1}l_{2}q},\tag{15}$$

$$\overline{P}_{00} = \frac{\rho g \cos \theta}{q} (h - x_3). \tag{16}$$

В соответствии с [5], имеем:

$$V_{mn}^{P}(x_{3},t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \overline{V}_{mn}^{P}(q,x_{3}) e^{qt} dq,$$
 (17)

$$P_{mn}(x_3,t) = \frac{1}{2\pi i} \int_{-\infty}^{c+i\infty} \overline{P}_{mn}(q,x_3) e^{qt} dq.$$
 (18)

Здесь c - произвольное положительное число. Используем для вычисления интегралов в (17), (18) метод вычетов [5].

С учетом краевого условия [4]:

$$\overline{P}_{mn} = d_{mn} \begin{cases} sh(\gamma_{mn}(h - x_3)), & m \neq 0, n \neq 0, \\ x_3 - h, & m = 0, n = 0, \end{cases}$$
(19)

где: $d_{\it mn}$ - постоянные величины, подлежащие определению,

и (11) — (16) коэффициенты $\overline{V}_{mn}^{P}(q,x_3)$ как функции комплексной переменной q имеют в комплексной плоскости с разделом по отрицательной полуоси (q<0) особенности типа полюса в точках $q=\pm i\omega$ и q=0, а коэффициенты $\overline{P}_{mn}(q,x_3)$ имеют полюс в точке q=0. Кроме того, эти функции стремятся к нулю при $\operatorname{Re} q \to -\infty$ (Re - реальная часть комплексного числа). Такие свойства функций

позволяют деформировать контур интегрирования в (17), (18) так, чтобы охватить все их особые точки. Тогда, на основании метода вычетов, после ряда преобразований получаем:

$$P_{00} = \rho g \cos \theta (h - x_3), \quad P_{mn} = -\frac{2U_0 B_{mn} \rho vsh(\gamma_{mn} (h - x_3))}{l_1 l_2 [h \gamma_{mn} sh(\gamma_{mn} h) - ch(\gamma_{mn} h)]}, \tag{20}$$

$$V_{00}^{1} = \frac{g \sin \theta}{2v} \left[h^{2} - (h - x_{3})^{2} \right] + A \omega Re \left[\frac{ch \left(\sqrt{\frac{i\omega}{v}} (h - x_{3}) \right)}{ch \left(\sqrt{\frac{i\omega}{v}} h \right) i} e^{i\omega t} \right], \tag{21}$$

$$V_{mn}^{1} = -\frac{i8\pi n U_{0} B_{mn} (h - x_{3}) ch(\gamma_{mn} (h - x_{3}))}{l_{1}^{2} l_{2} [h\gamma_{mn} sh(\gamma_{mn} h) - ch(\gamma_{mn} h)]},$$
(22)

$$V_{mn}^{2} = -\frac{i8\pi m U_{0} B_{mn} (h - x_{3}) ch(\gamma_{mn} (h - x_{3}))}{l_{1} l_{2}^{2} [h \gamma_{mn} sh(\gamma_{mn} h) - ch(\gamma_{mn} h)]},$$
(23)

$$V_{mn}^{3} = \frac{U_{0}B_{mn}\left[sh(\gamma_{mn}(h-x_{3}))(h-x_{3})-ch(\gamma_{mn}(h-x_{3}))\right]}{l_{1}l_{2}\left[h\gamma_{mn}sh(\gamma_{mn}h)-ch(\gamma_{mn}h)\right]}.$$
(24)

Здесь $\text{Re}(\cdots)$ - обозначает реальную часть комплексного числа, $\gamma_{mn}=2\pi\sqrt{\frac{n^2}{l_I^2}+\frac{m^2}{l_2^2}}$, коэффициенты B_{mn} определяются по формуле:

$$B_{mn} = \sum_{P=1}^{N} \int_{S_P} e^{i2\pi \left(\frac{n}{l_1} x_1 + \frac{m}{l_2} x_2\right)} dx_1 dx_2,$$
 (25)

где: $S_1, S_1, ..., S_N$ - отверстия виброрешета на базовой ячейке $\left[-\frac{l_1}{2}, \frac{l_1}{2}\right] \times \left[-\frac{l_2}{2}, \frac{l_2}{2}\right].$

Таким образом, решение задачи (1) - (10) представлено в виде двумерных рядов Фурье.

Так как, виброрешето является двумерно периодической структурой с периодом l_1 вдоль оси x_1 и периодом l_2 вдоль оси x_2 , то решение задачи (1) - (10) естественно искать в виде двумерных рядов Фурье по базисным функциям

$$\begin{pmatrix} i2\pi \left(\frac{n}{l_1}x_1 + \frac{m}{l_2}x_2\right) \\ e \end{pmatrix}_{n,m=-\infty}^{+\infty}$$
:

$$\vec{V} = \sum_{m,n=-\infty}^{+\infty} \vec{V}_{mn}(x_3,t) e^{i2\pi \left(\frac{n}{l_l}x_l + \frac{m}{l_2}x_2\right)},$$
(26)

$$P = \sum_{m,n=-\infty}^{+\infty} P_{mn}(x_3,t) e^{i2\pi \left(\frac{n}{l_1}x_1 + \frac{m}{l_2}x_2\right)}.$$
 (27)

В них коэффициенты Фурье определяются по формулам (20) – (24): избыточное давление:

$$P = \rho g \cos \theta (h - x_{3}) - \frac{2U_{0}\rho v}{l_{1}l_{2}} \left[\sum_{n \neq 0} \frac{B_{0n} sh(\gamma_{0n}(h - x_{3}))}{A_{0n}} e^{\frac{i2\pi n}{l_{1}}x_{1}} + \sum_{m \neq 0} \frac{B_{m0} sh(\gamma_{m0}(h - x_{3}))}{A_{m0}} e^{\frac{i2\pi n}{l_{2}}x_{2}} + \sum_{n \neq 0} \frac{B_{mn} sh(\gamma_{mn}(h - x_{3}))}{A_{mn}} e^{\frac{i2\pi n}{l_{2}}x_{2}} \right],$$

$$(28)$$

компоненты поля скорости $\vec{V} = V_1 \vec{e}_1 + V_2 \vec{e}_2 + V_3 \vec{e}_3$:

$$V_{I} = \frac{g \sin \theta}{2v} \left[h^{2} - (h - x_{3})^{2} \right] + A \omega Re \left[\frac{ch \left(\sqrt{\frac{i\omega}{v}} \right) (h - x_{3})}{ch \left(\sqrt{\frac{i\omega}{v}} h \right) i} e^{i\omega t} \right] - \frac{i8\pi U_{0} (h - x_{3})}{l_{1}^{2} l_{2}} \sum_{n \neq 0} \sum_{m \neq 0} \frac{nB_{mn} ch \left(\gamma_{mn} (h - x_{3}) \right)}{A_{mn}} e^{i2\pi \left(\frac{n}{l_{1}} x_{l} + \frac{m}{l_{2}} x_{2} \right)},$$

$$(29)$$

$$V_{2} = -\frac{i8\pi U_{0}(h - x_{3})}{l_{1}l_{2}^{2}} \sum_{n \neq 0} \sum_{m \neq 0} \frac{mB_{mn}ch(\gamma_{mn}(h - x_{3}))}{A_{mn}} e^{i2\pi \left(\frac{n}{l_{1}}x_{1} + \frac{m}{l_{2}}x_{2}\right)},$$
(30)

$$V_{3} = -\frac{U_{0}}{l_{1}l_{2}} \sum_{n} \sum_{m} \frac{B_{mn} \left[(h - x_{3}) \gamma_{mn} sh(\gamma_{mn} (h - x_{3})) - ch(\gamma_{mn} (h - x_{3})) \right]}{A_{mn}} e^{i2\pi \left(\frac{n}{l_{1}} x_{1} + \frac{m}{l_{2}} x_{2} \right)}, \tag{31}$$

где: $A_{mn} = h\gamma_{mn}sh(\gamma_{mn}h) - ch(\gamma_{mn}h)$.

Выводы. Таким образом, в результате уточнений было получено решение

краевой задачи динамики пузырьковой псевдоожиженной смеси по структурному виброрешету.

Список использованых источников:

- 1. Харченко С.А. К построению трехмерной гидродинамической модели динамики пузырьковой псевдоожиженой зерновой смеси по структурному виброрешету / С.А. Харченко // Праці ТДАТУ. Мелітополь, 2014. Вип.14. Т.2. С.80-85.
- 2. Харченко С.А. Уточнение уравнений динамики пузырьковой псевдоожиженой зерновой смеси по структурному виброрешету / С.А. Харченко, Л.Н. Тищенко // Вібрації в техниці та технологіях. Вінниця: ВНАУ, 2014. №1 (73). С.50-53.
- 3. Харченко С.А. Алгоритм расчета эффективного коэффициента динамической вязкости пузырьковой псевдожидкости, моделирующей сепарируемую зерновую смесь / С.А. Харченко, Л.Н. Тищенко // Вібрації в техниці та технологіях. Вінниця: ВНАУ, 2013. С.64-72.
- C.A. 4. Харченко К решению уравнений динамики пузырьковой псевдоожиженой зерновой смеси ПО структурному трехмерному виброрешету / С.А. Харченко // Сучасні напрями технології та механізації процесів переробних і харчових виробництв. – Харків: ХНТУСГ, 2014.-Вип.152. – С.109-114.
- 5. Лаврентьев М.Л., Шабат Б.В. Методы теории функций комплексного переменного. М.: ГИФМЛ, 1958. 675с.

Анотація

ДО ПОБУДОВИ МОДЕЛІ ДИНАМІКИ БУЛЬБАШКОВОЇ ПСЕВДОЗРІДЖЕНОЇ ЗЕРНОВОЇ СУМІШІ ПО СТРУКТУРНОМУ ТРИМІРНОМУ ВІБРОРЕШЕТУ

Тіщенко Л.М., Харченко С.О., Абдуєв М.М.

В статті визначено напрямки розв'язку рівнянь динаміки бульбашкових псевдозріджених зернових сумішей на віброрешетах у тримірному вигляді.

Abstract

TO CONSTRUCTION OF MODEL OF DYNAMICS OF BUBBLE FLUIDIZED OF GRAIN MIXTURE ON THE STRUCTURAL THREE-DIMENSIONAL VIBROSIEVE

L. Tischenko, S. Kharchenko, M. Abduev

The article defines the direction of solutions of equations of the dynamics of bubble fluidized grain mixtures on vibrosieves in three-dimensional form.