
Київський національний університет імені Тараса Шевченка Хімічний факультет

тези доповідей

XX міжнародної конференції студентів та аспірантів "СУЧАСНІ ПРОБЛЕМИ ХІМІЇ"

BOOK OF ABSTRACTS

XX International Conference for Students and PhD Students "MODERN CHEMISTRY PROBLEMS"

Київський національний університет імені Тараса Шевченка Хімічний факультет

тези доповідей

XX Міжнародної конференції студентів та аспірантів «СУЧАСНІ ПРОБЛЕМИ ХІМІЇ»

Book of abstracts

XX International Conference for Students and PhD Students «MODERN CHEMISTRY PROBLEMS»

Спонсори проведення конференції Conference Sponsor

АНТИОКСИДАНТНЫЕ СВОЙСТВА ЭКСТРАКТОВ ИЗ СУБЛИМИРОВАННОГО ПОРОШКА ЧЕРНИКИ

<u>Коваленко А.В. ¹, Губский С.М. ², Калугин О.Н. ¹</u> Харьковский национальный университет имени В.Н. Каразина 61000, Харьков, пл. Свободы, 4; anyuta.sun.1997@gmail.com ² Харьковский государственный университет питания и торговли, 61051, Харьков, ул. Клочковская, 333; s.gubsky@hduht.edu.ua

Интенсивное использование биоантиоксидантов в пищевых технологиях способствует проведению исследований, посвященных разработке добавок из растительного сырья, которые считаются перспективными источниками этих веществ. Чаще всего в разрабатываемых технологиях используют различные виды экстракции, а конечный продукт получают в виде жидких экстрактов или порошков. Технологии получения добавок из растительного сырья в виде экстрактов все чаще используются при изготовлении функциональных пищевых продуктов с высоким антиоксидантным потенциалом, а также с повышенной биологической и пищевой ценностью.

Плоды черники содержат несколько классов биоактивных фенольных компонентов, включая фенольные кислоты, антоцианы, флаван-3-олы, проантоцианидины, флавонолы и стилбены.

Целью данного исследования был поиск оптимальных условий для максимального извлечения экстракцией антиоксидантов полифенольной природы из сублимированного порошка плодов дикорастущей черники промышленного производства. В качестве растворителей для проведения экстракции использовали воду и смесь растворителей водаэтанол в различном соотношении. Процесс экстракции проводили традиционным методом твердо-жидкостной экстракции. Было исследовано влияние различных (температуры, соотношения объема экстрагента к массе порошка, времени экстракции, состава растворитиля) на процесс экстракции. В качестве маркеров содержания антиоксидантов использовали величины общей антиоксидантной емкости (ОАЕ) и общего содержания полифенолов (ОСП) и мономерных антоцианов (ОСМА), определяемых соответственно метолом гальваностатического кулонометрического титрования электрогенерированным бромом, спектрофотометрическим методом с реактивом Фолина-Чекольтеу и рН-дифференциальной методикой.

Для планирования эксперимента были применены методологию поверхности отклика с центрально-композиционным сферическим планом второго порядка. Процедура поиска оптимальных условий соответствовала максимальному отклику как отдельных целевых функции (ОАЕ, ОСП, ОСМА), так и их комбинации.

Обработка экспериментальных данных в рамках дисперсионного анализа (ANOVA) позволила выбрать оптимальную математическую модель процесса среди возможных: средних, линейных, смешанных и квадратичных моделей. Рассмотрено влияние факторов на процесс экстракции. Путем оптимизации определены оптимальные параметры экстракции, при которых получаем исходный продукт с максимальным антиоксидантным потенциалом.

Проведена валидация полученных результатов.