ризиками дозволить фармацевтичному підприємству суттєво зменшити негативні наслідки впливу ризиків.

Структура учебной программы по моделированию в логистике «Simulation for Global Logistics»

Горяинов А. Н., к.т.н., доцент кафедры транспортных технологий и логистики Харьковского национального технического университета сельского хозяйства имени Петра Василенко goryainov@ukr.net

Информационные компетентности менеджера являются важнейшей частью профессиональных качеств. Используя информационные технологии, удается сократить время для принятия и реализации управленческих решений. При этом важно иметь возможность моделировать различные ситуации.

В открытом доступе область моделирования в логистике еще не представлена широко. Поэтому любая информация по этому вопросу представляет большой интерес для использования в подготовке современных менеджеров (специалистов).

Рассмотрим подход к подготовке специалистов в области логистике в аспекте моделирования на примере учебного курса «Simulation for Global Logistics» (Моделирование для глобальной логистики) [1]. Программа представлена Coventry University (Университет Ковентри).

Рассматриваемая учебная программа входит в магистерскую программу «Global Logistics» [2]. Структура учебной программы «Simulation for Global Logistics» представлена на рис.

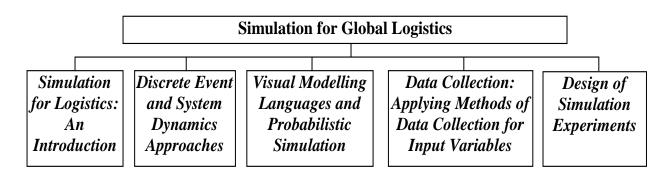


Рис. Структура учебной программ Simulation for Global Logistics (на основании [1])

Характеристика отдельных курсов учебной программы представлена в табл. 1 и 2.

Характеристика учебной программы «Simulation for Global Logistics» (результаты обучения)

Курс	Результаты обучения
1	2
Simulation for	1. Сможете оценивать, когда и где необходимо моделирование.
Logistics: An	2. Изучите способности моделирования решать логистические
Introduction	задачи. 3. Изучите этапы моделирования, которые можно
(Моделирование для	применить для моделирования систем.
логистики: введение)	4. Разовьете понимание концепции системы и ее компонентов.
	5. Изучите различные типы элементов системы.
	6. Сможете определять способы использования элементов для
	представления моделируемой системы.
Discrete Event and	Сможете: 1. Объяснять концепцию дискретно-событийного
System Dynamics	подхода.
Approaches (Дискретно-	2. Демонстрировать механизмы дискретно-событийного подхода.
событийный и системно-	3. Определять примеры применения дискретных событий.
динамический	4. Объяснять концепцию подхода системной динамики.
подходы)	5. Демонстрировать механизмы подхода системной динамики.
	6. Определять примеры применения системной динамики
Visual Modelling	1. Разовьете понимание языка визуального моделирования,
Languages and	такого как блок-схемы.
Probabilistic Simulation	2. Изучите вероятностное моделирование.
(Языки визуального	3. Изучите модули блок-схем и правила проектирования.
моделирования и	4. Разовьете понимание вероятности, неопределенности и
вероятностное	изменчивости для отражения реальности
моделирование)	
Data Collection:	Сможете: 1. Описывать связь между данными и
Applying Methods of	моделированием.
Data Collection for	2. Применять соответствующие методы сбора данных для
Input Variables (Сбор	моделирования.
данных: применение	3. Определять и использовать распределения вероятностей.
методов сбора данных для	4. Определять статистические распределения и их применение в
входных переменных)	моделировании.
	5. Экспериментировать с подгонкой данных к статистическим
	распределениям.
	6. Описывать критерий согласия.
Date of Give Late	7. Изучать выбор модели ввода без данных
Design of Simulation	1. Сможете описывать и выбирать соответствующие входные и
Experiments (Дизайн	выходные факторы для имитационных моделей.
(планирование)	2. Изучите выбор подходящего экспериментального дизайна (плана).
имитационных экспериментов)	3. Сможете разрабатывать имитационные модели, используя
экспериментов)	эффективную практику кодирования.
	3-ффективную практику кодирования. 4. Сможете определять эффективную практику кодирования.
	5. Сможете определять эксперименты, включающие условия
	разминки и завершения.
	6. Изучите практическое применение симуляционных проектов
	о. изучите практическое применение симуляционных проектов

Характеристика учебной программы «Simulation for Global Logistics» (учебные элементы)

Курс	Учебные элементы
Simulation for	Week 1. Introduction to logistics business simulation. What is simulation?
Logistics: An	Why do we need simulation? What can simulation do? Where can simulation
Introduction (2	be used? Advantages and disadvantages of simulation
weeks, 3 hrs per	How is simulation accomplished? Simulation steps. Warehouse management
week)	example. Session summary. Suggested readings. Introduction to ARENA
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Rockwell software and modelling modules
	Week 2. Fundamental components, including system, model and modelling.
	Modelling elements, including entity, attribute, activity, event and state
	variables. Basics of selecting entities. Basics of selecting attributes. Visual
	examples of system modelling elements. System analysis-tabular form.
	Building a first ARENA simulation model
Discrete Event	Week 1. Introduction and definition of discrete-event simulation. Why take
and System	the discrete-event simulation approach? The concept of discrete events.
Dynamics	Time-advance mechanisms. Visual examples of next event mechanisms.
Approaches (2	Discrete-event simulation stopping rules. Components and organization of a
weeks, 13 hrs per	discrete-event simulation model. Simulation using the discrete-event approach.
week)	Week 2. Defining a system dynamics approach. Components of system
	dynamics model. The structure of system dynamics. Advantages of system
	dynamics. Methodology of system dynamics. Symbols used in system
	dynamics modelling. System dynamics approach: a real-life case study.
	Modelling of financial problems. Simulate using system dynamics approach
Visual Modelling	Week 1. Introduction and definition of flowcharts. The importance of
Languages and	flowcharts. Why we use flowcharts. Flowchart field of applications. Types of
Probabilistic	flowcharts. Flowchart building blocks. Creating flowcharts. Flowchart
Simulation (2	control structures. Advanced transfer modules modelling of conveyors.
weeks, 13 hrs per	Week 2. Reasons for probabilistic modelling. Source of randomness. How
week)	randomness can be modelled. The probability concept. Distribution
	definition. Probability distribution. Families of probability distributions.
	Application of normal distribution. Mean and variance. Distribution fittings
	software. Simulation runs. Types of simulation runs. Simulation
D. A. C. H. 4	runs/replications. Distributing fitting-ARENA Input Analyser
Data Collection:	Week 1. The importance of input data. Data collection, tools and techniques
Applying Methods	– quantitative and qualitative data collection. Key activities in data
of Data Collection	collection. Data sets. Data treatment. Pitfalls.
for Input Variables (2	Week 2. Treatment of input data. Deterministic versus probabilistic. Selecting statistical distributions. Selecting appropriate statistical
Variables (2 weeks, 13 hrs per	distributions. Fitting input data to distributions. Goodness of fit test.
weeks, 13 lits per week)	Modelling without data
Design of Simulation	Week 1. Factors and responses. Sensitivity analysis. Design of experiments.
Experiments (2	Factorial design. Scenario analysis. Good practice in modelling construction.
weeks, 13 hrs per	Warm-up and terminating conditions.
week)	Week 2. Phases of simulation projects
WCCK)	11 teen 20.1 Huses of simulation projects

Учебная программа «Simulation for Global Logistics» использует пробную версию (trial version) программного продукта ARENA Simulation Software [3]. Особенности пробной версии: полная функциональность, без ограничения по времени, ограниченный размер модели.

Согласно данным разработчика около 52000 студентов в год проходят обучение на программном продукте ARENA [4]. Примеры использования представлены в [5].

Использованная литература:

- 1. Coventry University program Simulation for Global Logistics. URL: https://www.futurelearn.com/programs/simulation-for-global-logistics (дата обращения: 2020.10.09).
- 2. Горяинов А. Н. Магистерская программа «Global Logistics». университета Ковентри (Coventry University). *Актуальні проблеми розвитку галузевої економіки та логістики*: матер. VII міжнарод. наук.-практ. конф. з міжнар. участю 15.11.2019 р. / ред. кол.: О. В. Посилкіна, О. В. Літвінова, Я. Г. Онищенко. Х.: НФаУ, 2019. С. 100–103. URL: https://www.researchgate.net/publication/337331998_Magisterskaa_programma_Global_Logistics_universiteta_Koventri_Coventry_University.
- 3. Rockwell Automation Download Trial Version. URL: https://www.arenasimulation.com/simulation-software-down-load (дата обращения: 2020.10.09).
- 4. Rockwell Autom-ation Academic. URL: https://www.arenasimulation.com/academic. (дата обращения: 2020.10.09).
- 5. Rockwell Automation Video Library. URL: https://www.arenasimulation.com/video-library. (дата обращения: 2020.10.09).

Транспортна логістика як функціональна сфера суспільного виробництва

Дяченко А. Р., здобувач початкової вищої освіти 4 курсу спеціальності «Менеджмент» Кременчуцького льотного коледжу

Харківського національного університету внутрішніх справ

Харченко М. В., к.е.н. викладач циклової комісії економіки та управління Кременчуцького льотного коледжу

Харківського національного університету внутрішніх справ atlanta1680@gmail.com

Транспорт – одна з ключових галузей економіки країни. Транспорт займає провідне місце в системі суспільного виробництва; забезпечує перевезення вантажу або пасажирів до назначеної точки; 50% від загальних витрат на логістику становлять транспортні витрати.

Транспортна логістика — це галузь логістичної науки, що відповідає за доставку об'єктів в пункт призначення по розробленому оптимальному маршруту.