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Overwhelming majority of publications on Nonhomogeneous Poisson process considers just two monotonic forms
of the NHPP's ROCOF:: the log—linear model the power law model. In this paper, we propose to capitalize on the fact
that NHPP's rate of occurrence of failures (ROCOF) formally coincides with the hazard function of the underlying life
time distribution. Therefore, the variety of parametric forms for the hazard functions of traditional life time distribu-
tions could be used as the models for the ROCOF of respective NHPPs. Moreover, the hazard function of a mixture of
underlying distributions could be used to model the non—monotonic ROCOF. Parameter estimation of such ROCOF
models reduces to the estimation of the cumulative hazard function of the underlying life time distribution. We use re-

al—world automotive data to illustrate the point.

1. Introduction

The Nonhomogeneous Poisson Process (NHPP) is
widely used to model the failure process of repairable
systems. A key assumption of the NHPP model, in reli-
ability context, is that upon a failure, the system is re-
paired to the condition, as it was right before the failure,
a.k.a., the minimal repair or same—as—old repair assump-
tion. This assumption seems quite appropriate for a re-
pairable system such as an automobile, since typically
only a small part (i.e., component or a subsystem) of an
automobile is repaired at a time thus restoring it back to
the condition close to the same as it was before the fail-
ure.

Like any other point process, the NHPP is character-
ized by the cumulative intensity function (CIF), A(t),
which is the expected number of failures as a function of
operating time, ¢

A(t) = jl(z')dr, (1)

where A(7) is known as the rate of occurrence of fail-
ures or ROCOF.

An overwhelming majority of publications on the re-
liability applications of the NHPP, including Ascher and
Feingold [1], Thompson [2], Crowder et al. [3], Hoyland
and Rausand [4], consider just two monotonic forms of
the NHPP ROCOF. The first one is the log—linear model
discussed by Cox and Lewis [5], and the other one is the
power law model discussed by Crow [6]. Other, more
complex forms of ROCOF considered in the literature are
either a combination of the above two (e.g., [7]) or gener-
alizations of the log—linear model to include polynomial
terms in ¢ (e.g., [8]).

In this paper, we would like to discuss another family
of the ROCOF models, which extend the practical appli-
cation of the NHPP in reliability engineering.

2. NHPP and its Underlying Distribution

For the sake of this discussion, it is convenient to

think of the NHPP as a renewal process with
"same—as—old" type of renewal upon each failure. Such a
renewal process is called a generalized renewal (or
G-renewal) process and the respective renewal equation
is given by Kijima et. al [9]
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is defined such that g(#|0) = f(?), and F(.), f(.),h(.) are the
CDF, PDF and the hazard function of the time to first
failure distribution of the underlying distribution; and q is
the so—called restoration (or repair effectiveness) factor.

By setting ¢ = 1, the GRP reduces to the NHPP, and
the CIF of GRP reduces to that of NHPP
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Observing the beginning and the end of the above
equation, one can infer some useful properties:

Property 1. The cumulative intensity function of the
NHPP is formally equal to the cumulative hazard function
of the underlying failure time distribution.

It is obvious that the same is true with respect to the
derivatives of these functions:



Property 2. The ROCOF of the NHPP is formally
equal to the hazard function of the underlying failure time
distribution.

These properties of the NHPP allow using the hazard
functions of known failure time distributions as the mod-
els for the NHPP ROCOF. Thus, besides the traditionally
used Weibull as the underlying distribution (in which case
the respective ROCOF is the same as the power law mod-
el mentioned above), we propose to promote the use of
other popular in life data analysis distributions including
lognormal, normal, Gumbel, etc. Moreover, the hazard
function of a (finite) mixture of underlying distributions
could be used to model the non—monotonic ROCOF
trends.

3. Statistical Estimation of NHPP

Let the number of repairs, N(z), to occur in (0, ¢] be
given by N(t) =max{k |7, <t} fork=1,2, ...

The CIF in (0, 7] is then given by A(¢) = E[N(¢)]. A
natural estimator of A(?)[3] is

AO==3N,0), @)

where N — is a number of systems,

N
ZN ;(#) — is the total observed number of repairs in

J=1

0, 1].

If the NHPP is the governing failure process, then
due to Property 1, the above nonparametric estimator can
be used both for the CIF of the point process and the cu-
mulative hazard function (CHF) of the underlying distri-
bution

AO=A0 =3 N,0, )

Once the nonparametric estimate of the CHF is ob-
tained, one can use standard statistical procedures, e.g.,
hazard papers [10], for the estimation of the underlying
distribution parameters. These parametric estimates will
be the same as those to be used in the respective paramet-
ric model of NHPP ROCOF.

4. Numerical Example

Figures 1 and 2 show cumulative intensity functions
estimated for two separate (repairable) automotive sub-

systems. Figure 1 juxtaposes the empirical cumulative
intensity ~ function modeled via the traditional,
"Weibull-based", NHPP versus that modeled via "log-
normal—based" NHPP. One could observe the lack of fit
in the left part of the figure, which is rectified in the right
part of the figure.

Figure 2 juxtaposes the empirical cumulative inten-
sity function modeled via the traditional, "Weibull—
based" NHPP versus that modeled via
"Weibull-mixture—based" NHPP. As evidenced from the
figure, the Weibull-mixture—based NHPP models the
non—monotonic trend of the empirical ROCOF more
closely than the traditional power law NHPP, which is
constrained to the monotonic (in this case deteriorating)
trend. It must be noted that one has to exercise caution
extrapolating Weibull-mixture—based CIF.

The estimation in both cases was done using the least
squares (hazard paper) procedure with subsequent nonlin-
ear least squares refinement of the estimates.
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Figure 1 — Empirical cumulative intensity function modeled via Weibull-based NHPP (above)
and lognormal—based NNHP (below)
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Figure 2 — Empirical cumulative intensity function modeled via Weibull-based NHPP (above) and
Weibull-mixture—based NNHP (below)
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AHHOTaNNA

K BOITPOCY O BbIBOPE MO/JIEJIN ®YHKIINN
IIOTOKA OTKA30B HEOJHOPO/JHOI'O
IIYACCOHOBCKOI'O TIPOLECCA

Kpusnos B. B.

Hooasnawowee yucio nybaukayuti no HeoOHOPOOHO-
My nyacconosckomy npoyeccy (HIIII) ucnonvzyiom auuib
06e MOHOMOHHblE Napamempuyeckue Mooenu QYHKyuu
NOMOKA OMKA308. JO2NUHEUHYIO U cenenHyo. B oanuotl
pabome nokazano, ymo yukyus nomoxa omxazos HIIIT
dopmaneno cosnadaem ¢ QyHKyuen UHMEHCUBHOCTNU
6a306020 pacnpedenenusi, popmupyioujeeo oannuiii HIIII.
B omoil cea3u, 6éce pasznoobpazue napamempuyeckux
dopm pyHKyuu uHMeHCU8HOCMU pacnpedesienull, UCNOb-
3YeMbIX 8 MeopuU HAOEICHOCMU, MOdCem OblMb UCHOJIb-
308aHO 6 Kauecmee MOOenu (PYHKYuu HOMOKA OMKA308
HIIII. Bonee moeo, ¢ynxyus unmeHcugHocmu cmecu oa-
308bIX pacnpedeneHull Moxcem Oblmb UCNONL30BAHA O/is
MOOenUposanss HEMOHOMOHHOU YHKYUU NOMOKA OMKA-
306 HIIII. Oyenxa napamempos HIIII ceooumcs k oyenxe
napamemposd 6az06020 pacnpeoenenus HIIII. Cymo
npeonazaemoz2o nooxooa NPOULTIOCMPUPOSAHA HA OaH-
HbIX O HAOEICHOCMU U3 ABMOMOOUTLHOU NPOMBIULIEHHO-
cmu.

AHoTaNis

JIO MIUTAHHSA ITPO BUBIP MOJIEJIT ®YHKIII
IHOTOKY BIIMOB HEOJHOPITHOI'O
ITYACCOHIBCBKOI'O ITPOLECY

Kpisuos B. B.

Iepesasicna Kinekicms nyoaikayii no HeoOHOPIOHO-
My nyacconiscokomy npoyecy (HIIII) euxopucmosyroms
uuie 081 MOHOMOHHI hapamempuyHi mooeni yukyii no-
MOKY 8i0MO08: J02NiHilHY | cmeneHegdy. B Oaniii pobomi
nokazamo, wjo Gynxyis nomoxy iomoe HIIII ¢popmansro
30ieaemvcst 3 YHKYIEIO [HMEHCUBHOCME 6A306020 PO3NO-
oiny, wo gopmye danuti HIIII. YV 36'a3xy 3 yum, éce pos-
maimmsi napamempuyHux Gopm @yHKyii po3nooinie iH-
MEHCUBHOCII, WO SUKOPUCTOBYIOMbCS 8 Meopii HaOIiHO-
cmi, Modice OYmu GUKOPUCMAHO 8 SIKOCMI MOOei QyHKYIl
nomoxky 6iomos HIIII. Binvw mozo, (hyHKyist iHMeHCUBHO-
cmi cymiwi 6a308ux po3nooinie modice bymu suxopucma-
Ha 01 MOOeN08AHHS HEeMOHOMOHHOI (YHKYII nomoky
6iomoe HIIII. Oyinka napamempie HIIII 3600umvcs 00
oyinku napamempig 6azoeozo posznodiny HIIII. Cymo
NPONOHOBAHO20 NIOX00Y NPOINIOCMPOBAHO HA OAHUX 3
HAaOIHOCMI 8 A8MOMOOIILHIL NPOMUCTIOBOCIIL.





