УДК 637.116

ИССЛЕДОВАНИЕ УСИЛИЯ, РАЗВИВАЕМОГО СОСКОМ ВЫМЕНИ КОРОВЫ ПРИ ИЗМЕНЕНИИ ЕГО ДИАМЕТРА

Чехунов О.А., к.т.н., доцент

(ФГБОУ ВО Белгородский ГАУ, г. Белгород, Россия)

В статье представлено описание устройства и результаты испытаний усилия, оказываемого соском при изменении его диаметра.

Специалистам в области машинного доения коров известно, что слабое место серийно выпускаемых доильных аппаратов — их сосковая резина, изменение механических характеристик которой ведет к нарушению, а иногда и к полному прекращению процесса извлечения молока. Наползание доильных стаканов на соски вымени, что приводит к перекрытию канала между цистерной вымени и полостью соска и, как следствие, к холостому доению. Отрицательно влияют на доение и ударные воздействия на соски, возникающие в результате цикловых пульсаций сосковой резины. В процессе доения корова испытывает вначале ударную нагрузку на сосок, потом сжатие его резиной, что приводит к постепенному ороговению соска и появлению на его поверхности трещин. Еще один недостаток доильных аппаратов — образование в подсосковых камерах аэрозолей, способствующих проникновению патогенных микробов в полости молочных цистерн вымени животных.

Для исключения этих недостатков нами разработан доильный аппарат, включающий однокамерные доильные стаканы с пневмоклапанами, обеспечивающими периодический впуск атмосферного воздуха в подсосковую камеру, двухполупериодный пульсатор и коллектор с двумя регуляторами вакуума, каждый из которых объединяет два диаметрально противоположных доильных стакана [1].

Для обеспечения работоспособности доильных аппаратов с однокамерными доильными важно знать значение силы трения, возникающей между соском и стенкой стакана. Теоретически ее можно найти по выражению:

$$F_{mp} = F_{v} \cdot f_{mp}, \tag{1}$$

где F_y — усилие, развиваемое соском, H; f_{mp} — коэффициент трения материала доильного стакана по соску.

Для нахождения величины силы трения опытным путем, мы определяли закономерность изменения величины усилия воздействия соска вымени коровы в трех точках (у основания, посередине и на расстоянии 5 мм от окончания соска) от величины разрежения в подсосковом пространстве доильного стакана определяли. Для этого была разработана и изготовлена экспериментальная

установка для измерения усилия воздействия соска на стенку однокамерного доильного стакана от величины разрежения в подсосковом пространстве (рисунок 1) [2].

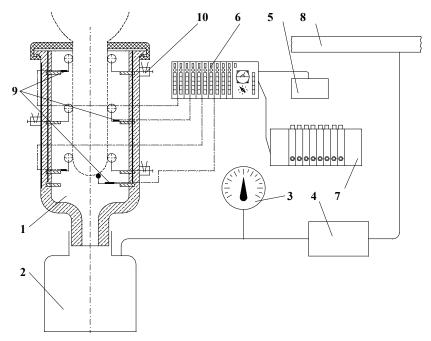


Рисунок 1 — Схема экспериментального устройства для измерения усилия воздействия соска на жесткую стенку в зависимости от величины разрежения в подсосковом пространстве доильного стакана: 1 — специальный доильный стакан; 2 — емкость для сбора молока; 3 — вакуумметр; 4 — регулятор вакуума; 5 — блок питания; 6 — тензоусилитель; 7 — регистрирующее устройство; 8 — вакуумпровод; 9 — тензорезисторы; 10 — механизм перемещения

Устройство для измерения усилия, оказываемого соском, выполнено в виде специального однокамерного доильного стакана 1, съемной емкости для сбора молока 2, вакуумметра 3, регулятора вакуума 4, блока питания 5, тензоусилителя 6, регистрирующего устройства 7, вакуумпровода тензорезисторов 9 и механизма перемещения 10. Доильный стакан выполнен однокамерным, с механизмом для измерения усилия, оказываемого соском на жесткую стенку при изменении его диаметра, состоящего из трех аналогичных узлов с возможностью измерения усилия, оказываемого соском в трех точках (у основания, посередине и у окончания соска). Каждый узел механизма выполнен в виде кольца с прорезями, механизма перемещения кольца в корпусе доильного стакана и измерительной части. Последняя выполнена в виде рычагов с выступами и тензоэлементами, шарнирно закрепленными в корпусе доильного стакана, кронштейнами с отверстиями и опорными колесами. Механизм перемещения выполнен в виде корпуса, штока, подпружиненного пружиной и жестко закрепленного с кольцом, стопорных рычагов с отверстиями, между которыми установлены пружина и ограничитель хода.

Исследования проводили следующим образом. После надевания специального доильного стакана 1 на сосок вымени животного, регулятором

вакуума 4 плавно изменяли вакуумметрическое давление в подсосковой камере доильного стакана (в пределах от 5 до 55 кПа, с шагом 5 кПа) с точностью $\approx \pm 0,5$ кПа. Измерения усилия воздействия соска на жесткую стенку проводили с трехкратной повторностью по каждому соску вымени в трех точках: у основания, посередине и у окончания соска с точностью измерений $\approx \pm 0,09$ Н. Сигнал с тензорезисторов регистрировали на регистрирующем устройстве 7. Для усиления сигналов использовали многоканальный шлейфовый тензоусилитель 6 с блоком питания 5. Одновремено регистрировали величину вакуумметрического давления в подсосковом пространстве доильного стакана вакуумметром 3.

После обработки результатов исследований зависимости изменения усилия воздействия соска на жесткую стенку от величины разрежения в подсосковом пространстве доильного стакана нахождение величины силы трения между соском и стенкой однокамерного доильного стакана для различных начальных диаметров сосков вымени вели по выражению (1).

В результате проведенных исследований согласно описанной выше методики был получен ряд значений усилия воздействия соска на жесткую стенку от величины разрежения в подсосковом пространстве доильного стакана. Проверку однородности полученной выборки проверяли по критерию Кохрена.

Графическая интерпретация зависимости изменения усилия воздействия соска на жесткую стенку однокамерного доильного стакана от величины разрежения в подсосковом пространстве для трех точек (у основания, посередине и у окончания соска) представлена на рисунке 2.

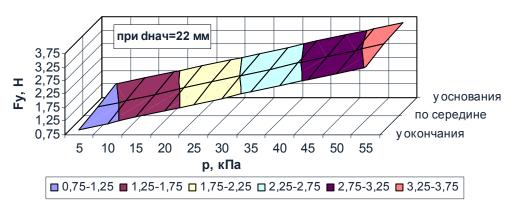


Рисунок 2 — Зависимость усилия воздействия соска на жесткую стенку от величины разрежения в подсосковом пространстве доильного стакана при начальном диаметре соска 22 мм

В результате обработки данных исследований установлено, что искомая зависимость достаточно полно описывается линейным уравнением вида:

у основания соска:
$$Y=0.0000457 \cdot x + 1.0199$$
; по середине соска: $Y=0.0002048 \cdot x + 1.1572$; у окончания соска: $Y=0.0000507 \cdot x + 0.1572$. (2)

где Y — усилие, развиваемое соском от величины разрежения в подсосковом пространстве доильного стакана, H; x — вакуумметрическое давление, Πa .

Подставив полученные уравнения в выражение (1), получаем экспериментальные зависимости изменения силы трения между соском и стенкой однокамерного стакана от величины разрежения в подсосковом пространстве доильного стакана. Графическая интерпретация представлена на рисунке 3.

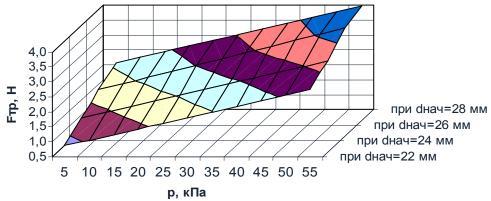


Рисунок 3 — Зависимость изменения силы трения между соском и стенкой однокамерного доильного стакана от величины разрежения в подсосковом пространстве

Теоретическую зависимость изменения силы трения между соском и стенкой однокамерного доильного стакана можно найти по выражению [3]:

$$F_{mp} = \frac{\pi d_c l_c f_{mp} \left[(1 - \mu_2) r_{02}^2 (p_{_{GH}} + p) r_2^2 + (1 + \mu_2) r_{_{\kappa}}^2 r_2^2 (p_{_{GH}} + p) - U_2 E_2 (r_{_{\kappa}}^2 - r_2) r_{02} \right]}{(1 - \mu_2) r_{02}^2 r_{_{\kappa}}^2 + (1 + \mu_2) r_{_{\kappa}}^2 r_2^2}$$
(3)

где d_c —диаметр соска, м; l_c — длина соска, м; μ_2 — эмпирический коэффициент поперечной деформации соска; r_{02} — элементарный радиус соска, м; $p_{\it вh}$ — внутрисосковое давление, Па; p — вакуумметрическое давление в стакане, Па; r_2 — радиус соскового канала, м; $r_{\it k}$ — контактный радиус между соском вымени и однокамерным доильным стаканом, м; U_2 — радиальное перемещение соска, м; E_2 — эмпирический переменный модуль упругости, H/M^2 .

Оценку достоверности сходимости теоретических и экспериментальных данных зависимости силы трения между соском и стенкой однокамерного доильного стакана проводили по критерию Фишера. Методом дисперсионного анализа по критерию Фишера проверялась адекватность теоретических и экспериментальных моделей, а также сравнивались экспериментальные зависимости, характеризующие изменение силы трения между соском и стенкой однокамерного доильного стакана от величины вакуумметрического давления в подсосковом пространстве для различных начальных диаметров

сосков вымени. Так величина силы трения при изменении вакуумметрического давления в подсосковом пространстве доильного стакана от 5 до 55 кПа для сосков с начальным диаметром 22 мм изменяется в пределах от 0,85 до 2,7 Н.

Установлено, что различие между экспериментальными зависимостями силы трения соска по стенке однокамерного доильного стакана достоверно. Фактические значения F — критерия Фишера при сравнении смежных уравнений, а также соответствующих в различных группах превышало табличное значение, равное 2,71. Одновременно было доказано, что теоретические и экспериментальные модели адекватны. При табличном значении F_{05} — критерия Фишера равном 2,71, фактическое значение находилось в интервале 1,11...2,50. Это свидетельствует о достоверности нашего теоретического предположения о зависимости трения соска по стенке доильного стакана при различных значениях вакуумметрического давления в подсосковом пространстве стакана.

Список литературы

- 1. Патент 2250605 RU, МКИ 7 A 01J 5/04. Доильный аппарат / Ужик В.Ф., Чехунов О.А., Скляров А.И., Ужик О.В., Борозенцев В.И. 2004110091/17; Заявлено 02.04.2004; Опубл. 27.04.2005. Бюл. № 12.
- 2. Патент 2284691 RU, МКИ 7 A 01J 7/00. Устройство для измерения усилия, оказываемого соском при изменении его диаметра / Ужик В.Ф., Чехунов O.A-2005100590/12; Заявлено 11.01.2005; Опубл. 10.10.2006 Бюл. N 28.
- 3. Ужик В.Ф. Аналитическое обоснование конструктивно-режимных параметров доильного аппарата с однокамерными доильными стаканами [Текст] / В.Ф. Ужик, О.А. Чехунов // Бюллетень научных работ. Выпуск 5. Белгород. Издательство Бел ГСХА, 2006. С. 138 143.

Abstract

Research efforts developed by the nipple of the udder of the cow when changing the diameter

O. Chehunov

The article presents the description of the device and the test results of the efforts exerted by the nipple while changing the diameter.

Анотація

Дослідження зусилля, развиваемого соском вимені корови при зміні його діаметра

Чехунов О.А.

У статті представлено опис пристрою і результати випробувань зусилля, що чиниться соском при зміні його діаметра.