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The most comprehensive prediction model is the g—renewal process proposed by Kijima [1], which allows for mod-
elling of both perfect and imperfect repairs through the use of the so—called restoration factor. Krivtsov and Yevkin [2]
showed that statistical estimation of the g—renewal process parameters is an ill-posed inverse problem (the solution is
not unique and/or is sensitive to statistical errors). They proposed a regularization approach specifically suited to the
g—renewal process: separating the estimation of the underlying life distribution parameters from the restoration factor
in two consecutive steps. Using numerical studies, they showed that the estimation/prediction accuracy of the proposed
method was considerably higher than that of the existing methods. This paper elaborates on more advanced regulariza-
tion techniques, which allow to even further increase the estimation/prediction accuracy in the framework of both Least
Squares and Maximum Likelihood estimation. Proposed regularization becomes especially useful for limited sample
sizes. The accuracy and efficiency of the proposed approach is validated through extensive numerical studies under
various underlying lifetime distributions including Weibull, Gaussian and log—normal.

Acronyms:

CDF cumulative distribution function
CIF cumulative intensity function

GPR generalized renewal (g-renewal) proc-
ess

MLE maximum likelihood estimation

LSQ least residual squares estimation

PDF probability density function

1. Introduction. The problem of recurrent failure
prediction arises in forecasting warranty repairs/cost,
maintenance optimization and evaluation of repair qual-
ity. The most popular model of the g-renewal process is
suggested by Kijima [1] by introducing the notion of vir-
tual age defined by the restoration factor, q. If g=0, the
repair is perfect. If g> 0,the repair is imperfect including
the case of g=1, when the system is restored to the
“same—as—old” condition.

We have shown in [2] that, in general case, parameter
estimation of g-renewal process is an ill-posed problem.
It means that the obtained solution can be non—unique and
significantly depends on small changes in the input data.
Typically, additional information is required to resolve an
ill-posed problem. It is suggested in [2] to solve the prob-
lem in two steps. At the first step, only the underlying life
time distribution is estimated using the time to first fail-
ures only. At the second step, only restoration parameter g
is estimated using a// recurrent failure times. Obviously,
this approach not only converts an ill-posed problem into
a regular one, but is also very efficient in terms of compu-
tational time, because the estimated parameters are de-
coupled and at the second step (most time consuming)
only one parameter is estimated. This approach works
well, if at the first step, parameters of the underlying fail-
ure time distribution are estimated with good accuracy
based on a relatively large sample size of observed failure
times. In this paper, we suggest an improvement to this
approach and show its efficiency for small sample sizes,
which is often a restriction in practical applications.

2. Background of the problem. Let us consider the
cumulative intensity function (CIF) W (t) corresponding to
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an arbitrary underlying cumulative distribution function
(CDF)and the restoration factorg =1. We can always

make g=1 and find the exact solution for underlying CDF
in the closed form F(¢) =1-¢ ", which would differ

from the given one simply because ¢ is different. This
example shows that the inverse g—renewal problem has no
unique solution in general case. Another obvious example
is the case when the underlying failure times follow the
exponential distribution. In this particular case, the resto-
ration factor ¢ cannot be estimated, because with the un-
derlying exponential distribution, the g—renewal process
does not depend on gq.

As most inverse problems, the g-renewal inverse
problem is ill-posed. It means that a numerical algorithm
can converge to different solutions depending on selected
initial values for the parameters, even if the type of under-
lying CDF (e.g., Weibull) is specified. Example 1 in the
Appendix shows failure times for 5 repairable systems,
which were observed until time 7=40 (suspension time).
The failure times were generated by the Monte Carlo
method using Kijima I model with the restoration factor
g=1 and the underlying log—normal distribution with pa-
rameters: y=2,0=0.5.

The maximum likelihood estimation (MLE) method
yields two sets of solutions:

2, =1.094,8,=0.924,4, =0
i, =1.751,6, =0.569, §, = 0.577

both corresponding to the two local maximums of the
log—likelihood function L, =-105.86, L, =—107.86. These

maximal values of the log—likelihood are close to each
other and are obtained by the same Newton—Raphson
method but with different initial values for restoration
factor: g=0.1 and ¢=0.5. We will consider this example in
more details in Section 4 but, for now, one must admit
that the algorithm can converge to different solutions,
especially in presence of significant statistical noise.

To avoid this uncertainty, the following regulariza-
tion method is suggested in [2] for ill-posed inverse g—



renewal problem. At the first step, only times to first fail-
ures are considered and parameters of the underlying CDF
are estimated. Considering these parameters as known,
the restoration factor ¢ is then estimated at the second
step. It is an efficient approach, if the CDF parameters
have been estimated with a good accuracy based on suffi-
cient sample size of first failure times (i.e., the number of
the repairable systems under observation is sufficiently
large).

However, for a smaller number of systems under ob-
servation, the estimation error of the underlying CDF can
be quite significant. Notably, times to subsequent failures
(beyond the first failure)depend not only on the restora-
tion factor, but also on the underlying CDF parameters.
So, these subsequent failure times can be used to even
better estimate the CDF of the times to the first failures.
(It’s understood that with g=0,when upon a failure a sys-
tem is replaced by a new one, all times between subse-
quent failures can be considered as times to first failures.)

In this paper, we suggest the following improvement
to our algorithm originally proposed in [2]. The first step
remains the same; however, the obtained estimates of the
underlying CDF are now used as the initial values for the
second step, whereat all model parameters are estimated
simultaneously. This approach allows, on the one hand,
avoiding irrelevant solutions, and on the other hand, im-
proving computational speed, as the number of iterations
significantly depends on the selected initial values.

In the remainder, we will describe the proposed ap-
proach and the computational algorithm (Section 3) using
both the MLE and the least residual squares (LSQ) meth-
ods, consider several examples illustrating the algorithm
(Section 4), and compare the MLE and LSQ methods
(Section 5).

3. Proposed methodology and the algorithm. For
sake of simplicity we assume that time between failures is
much greater than the time to repair in the g-renewal
process. Let ¢, be time to the first failure, #, be the time
between the first failure and the second failure, so that ¢ is
the time between the (i—1)—-th and i—th failures. According
to Kijima and Sumita [1], the probability to next i—th fail-
ure is defined as:

F(4i, +4) - F(4,,)
1-F(4,,)

F(t)= M

where F(¢) is underlying CDF and 4; is the virtual age
that depends on the restoration factor q.

Two models of aging are suggested in [1]. Model I:

(2)
where 7, is the real age at the i th failure, 4,=0. Ac-
cording to Model II :

A4;=qr;

4; =494, ®)
if i > 1.The corresponding probability density function
(PDF) is the derivative of the cumulative distribution

function (1):
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S(4i, +1))
1=F(4;,)

ft)= )

where f{t) is the PDF of underlying failure time dis-
tribution.

In case of N repairable systems, for the j—th system
we will use the following notation 7/ (¢/) and f/(:/)in-
stead of (1) and (4).

3.1. LSQ method. The rank regression method is
used in this case and the residual squares function is con-
structed. Considering first failures only, the sum of resid-
ual squares is:

2

(Fl"(ti")—ﬁf(f{'))

=

S, = (%)

~.

where F/ (¢]) are the nonparametric estimates of the

time to first failures CDF obtained via a rank regression
method.

Equation (5)is minimized with respect to the underly-
ing CDF parameters.

A similar expression can be constructed for the CIF
residual squares (that now includes all failures, not only
the first ones):

2

Sz :i(le(tlj)_Wj(tlj)) (6)
=1

which additionally depends on the restoration factor,

Mathematically, we have to find the minimum of .S,
under the condition that S; is also minimal; therefore, it is
reasonable to consider the minimum of the following
functions

S=8+8S, )
instead of (6). At the first stage, we solve for the parame-
ters of the underlying CDF by minimizing (5). This is the
casiest part of the calculation, because the minimum is
available in a simple form for most underlying CDEF’s.
To minimize (7) with respect to all model parameters (in-
cluding g),as the next step, we apply the advanced Monte
Carlo method discussed in [3]. It allows to efficiently
calculate the CIF for the given system parameters and
even partial derivatives of the CIF with respect to system
parameters. The values of derivatives are used in finding
the minimum of (7) by applying the Gauss—Newton algo-
rithm, which is efficient in most non-linear regression
problems. The standard error, SE, corresponding to (7) is
calculated as

SE = JS/r +71y) (3

where r; and r, is the number of first failures (as in
(5)) and all failures (as in (6)), respectively.



3.2. MLE method. The log—likelihood function for
the CIF can be represented as:

L= i{Z in(f/ (¢/))+ (- F(T,) )

The second term inside the internal sum corresponds
to the suspension, if the suspension time exceeds the time
of the last failure of the j—th item with T; being the differ-
ence between these two times. Equation (9) can be explic-
itly written in terms of the underlying distribution pa-
rameters and g— for the case of Weibull, Gaussian and
log—normal distributions. It is also possible to take first
partial derivatives of (9)with respect to all g-renewal
model parameters. For the case of the Weibull distribu-
tion, the solution can be found in [4]. We use the New-
ton—Raphson iteration method to find the maximum of
(9). Second partial derivatives are calculated numerically.

We can change the order of summation and regroup
(9) as

(10)

where L; accumulates all terms (including the suspen-
sion terms, if any) of all systems corresponding to the i—th
failure.

Especially, we are interested in first term correspond-
ing to first failures. It is obvious that equations (1) and (4)
yield the CDF of the underlying failure time distribution,
because A4¢=0, if i=1, and virtual age of the system equals
its real age at the first failure. Therefore,L, is exactly the
log-likelihood used in the time to first failures estimation
and is thus already included in (9).It is remarkable that we
do not need to include L, in (9) as a separate term.

3.3. The algorithm. The prosed estimation procedure
is as follows:

1. Using the rank regression method, estimate the
underlying CDF parameters taking into account only first
failures by minimizing (5).

2. The obtained estimates are used as initial values
in the MLE method to further refine the underlying CDF
parameters. The corresponding log—likelihood function L,
is maximized using the Newton—Raphson algorithm.

3. The estimated CDF parameters are used as the
initial in this step. The Newton—Raphson iteration algo-
rithm is used to maximize the likelihood function (9) with
respect to allg—renewal model parameters. We recom-
mend repeating this calculation step for several initial
values of the restoration factor.

4. The LSQ method is applied in this step. Previ-
ously obtained result is used as initial values for the
Gauss—Newton iteration method minimizing (7).

5. Confidence intervals are estimated using the
Fisher information matrix and the numerically calculated
partial derivatives of the CIF with respect to all model
parameters. Advanced Monte Carlo method is applied
here according to [4].

Steps 1-3 take approximately 1 second to calculate
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using a laptop with a 1.7GHz of processor speed and
8.0GB of RAM. Step 4 takes several more seconds. We
recommend to still perform this step, especially if the
MLE in Step 3 converges to different values depending
on initial value of the restoration factor (see Example 1).
The most time consuming is Step 5 — it takes several sec-
onds. The algorithm is implemented for Kijima model I
and II in the free online calculation software[6]. In addi-
tion, the mean time to repair can be introduced (with
some restrictions) as a calculation option.

4. Examples. We will consider 3 examples illustrat-
ing some specific features of the proposed procedure and
the efficiency of the algorithm. Input data were generated
by Monte Carlo simulation [5] and are given in the Ap-
pendix.

4.1. Example 1. This example shows two solutions
corresponding to two different initial values of the resto-
ration factor. The failure times (Example 1 in the Appen-
dix) were simulated by using Kijima I model with the
restoration factor of g=1 and the log—normal underlying
failure time distribution with the following parame-
ters: 1 =2, o = 0.5. Five repairable systems were observed
until 7=40 (suspension time).

Below is the summary of the estimation results (cor-
responding to the first 4 steps of the proposed procedure)
with the initial value of the restoration factor g=0.1:

1. The rank regression method yields the following
estimates for the underlying CDF  parame-
ters: 4=1.86, 6 =0.908.

2. The MLE method shows a somewhat better
(closer to the original values) estimation of the CDF pa-
rameters: 1 =1.86, 6 =0.693.

3. The MLE method for Kijima model I yields the
maximum log-likelihood: L = —105 .96 corresponding to
parameters [ =1.094, 6 =0.924, § =0 (see Fig. 1)

4. The LSQ
1=1.20,6=0.846,§ =0.021
010.379 (for the entire model).

solution is
with the standard error

The obtained MLE solution for the CIF is depicted in
Fig. 1 with the 90% two—sided confidence interval.

CIF
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0.0 13.333333 26666666 time

Fig. 1 — MLE solution (2 =1.094, 6 =0.924, § = 0) with
90% two sided confidence interval.



Below is the summary of the estimation results with
the initial value of the restoration factor ¢g=0.5:

1. The rank regression method for the underlying
CDF yields: 4=1.86, 6 =0.908.

2. The MLE method yields a somewhat better esti-
mation: ;=1.86, 6 =0.693.

3. The MLE method for the Kijima model yields
the maximum log—likelihood L =-107.86 corresponding to
parameters 4 =1.75,6 =0.569, 3 =0.577 .

4. The LSQ solution is ;=1.70,6 =0.572 G = 0.492
with the standard error 0f0.280.

The obtained MLE solution for the CIF is depicted in
Fig. 1 with the 90% two—sided confidence interval.
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—

v
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Fig. 2 — MLE solution ( & =1.75,6 =0.569, § =0.577)
with 90% two—sided confidence interval.

Comparing these two results, we can conclude that
there are two solutions with the local maximum log—
likelihood values close to each other but with significantly
different estimates of the g-renewal model parameters.
The two LSQ solutions are close to the MLE solutions.
However, the second LSQ solution yields a much lower
standard error and the second solution better fits the non-
parametric CIF. This example is rather exceptional, but it
illustrates the specific nature of the problem and the im-
portance of selecting initial values for the iteration meth-
ods not only in terms of the convergence speed, but also
in terms of choosing right solution, which can be non—
unique.

4.2. Example 2. The failure times (Example 2 in the
Appendix) in this example were simulated by using Ki-
jima model I with the restoration factor ¢=0.5 and the
underlying Weibull CDF with scale parameter ;=1and

shape parameter =2 . Five systems were observed until

the suspension time of 7=2. Below is the summary of the
estimation results (corresponding to the first 4 steps of the
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proposed procedure):

1. The rank regression method for the underlying
CDF yields: § =3.422, /= 0.855.

2. The MLE method yields the following esti-
mates: 3 = 4.49, 7= 0.843.

3. The MLE method applied to Kijima model
yields the maximum of the log—likelihood: 7 = —4.358 cor-

responding to the flowing  parameter  esti-
mates: §=2.76,6 =0.814,§=0.175.
4. The LSQ solution is

B=2.63,/1=0.816,G=0.254 with the overall standard
error of 0.144.

The Weibull parameter estimates have improved sig-
nificantly at the last two steps. The obtained LSQ solution
is shown in Fig. 3 with the 90% two—sided confidence
interval.

It must be noted that the CIF (and, therefore, the like-
lihood function as well as the residual sum) is most sensi-
tive to the scale parameter (or the mean time to failure) of
the underlying distribution, then to the shape parameter
(or the standard deviation) and finally to the restoration
factor. For example, relatively large changes in ¢ can be
compensated by some small changes of the scale parame-
ter. Hence, the importance of the estimation accuracy of
the respective parameters has the same order (sequence).

CF
ri

/_/
20587914 pd

//
/

AN

-
00

0.0

06666667 1333334 time

Fig. 3— LSQ solution ( 8 =2.63, 5 =0.816, § = 0.254 ) with
the 90% two—sided confidence interval.

Let us now compare the obtained CIF estimation with
the result when Weibull parameters ( 2 =3.422, 7 =0.855)
are fixed after step 1 of calculation as recommended in
[2]. The obtained CIF is shown in Fig. 4. The correspond-
ing restoration factor §=0.315. The curve fits better,
when the CIF is less than 1, but, overall, the standard de-
viation is 0.167, which is larger than 0.144 obtained via



the improved technique. If the MLE method is applied
with fixed Weibull parameters 3 =4.49, 7/ =0.843, we

obtain solution withg =0.212and the log-likelihood of-
6.84, which is much lower than —4.358 for the process
parameters 3 =2.63,7 =0.816, § = 0.254 (Fig. 3).

CIF
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Fig. 4 — LSQ solution ( 3 =3.42, 7 =0.855, § = 0.315) with
the 90% two-sided confidence interval.

4.3. Example 3. The failure times (Example 3 in the
Appendix) were simulated by using Kijima model I with
the restoration factor g=0 and the underlying Gaussian
failure time distribution function with the following mean
and standard deviation: =4, c=0.5. Five systems were
observed until the suspension time of 7=15.

We intentionally estimated the system parameters us-
ing the Weibull model, i.e., as if we don’t know the para-
metric form of the underlying CDF:

1. The rank regression method for the underlying
CDF yields: /} =7.47, 7=4.43.The corresponding mean
and standard deviation: /; = 4.158, 6 = 0.658..

2. The MLE method yields: 3=8.63, / = 4.41with
the corresponding mean and standard devia-
tion ;= 4.168, 6 = 0.578.

3. The MLE yields the maximum of the log—
likelihood L=-11.83 corresponding to
B=9247=433,G=0 (2=4.1056=0.532).

The obtained MLE solution is depicted in Fig. 5 with
the 90% two—sided confidence interval. The Weibull
mean and the standard deviation for the obtained CDF
estimates are4.105 and 0.532, respectively. This is close
to the original parameters of the Gaussian distribu-
tion u=4,5=0.5. The estimation of the g—renewal proc-

ess parameters with the underlying Gaussian distribution
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yields slightly better result for log—likelihood function:
L=-10.75, j1=4.10,6 =0.464 .This example also illus-
trates oscillating behavior of the CIF (i.e., or, highly lo-
calized failure events), when the standard deviation of the
underlying CDF is much less than its mean.
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Fig. 5—MLE solution ( 2 =9.24, 7 = 4.33, g =0 )with the
90% two—sided confidence interval.

Despite the fact that the considered examples were
based on Kijima I model, the proposed procedure is
equally applicable to Kijima II model.

5. Concluding remarks. We have conducted exten-
sive numerical experiments using Monte Carlo simulation
[5] with various types of underlying CDF’s (Gaussian,
log-normal and Weibull) and different values of their
parameters. Three values of restoration factor 0; 0.5; 1.0
were used in the simulation. On average, 2 to 4 failures
occurred before a given suspension time.

In each simulation, we observed 5 identical reparable
systems. Each system failed at least once. We used the
simulated data for the g-renewal model parameters esti-
mation using both the MLE and the LSQ methods. We
measured the efficiency of each method by comparing the
estimated results with the exact (original) data and dem-
onstrated the advantages of the proposed advanced regu-
larization.

We also noticed that in the considered setting, there
was not any clear preference of the MLE vs. the LSQ
method or vice versa. It is probably not surprising, be-
cause in are current failure process, the suspension time
plays a less significant role, as the time between the last
failure and the suspension is significantly smaller, on av-
erage, than the total observation time. However, the MLE
method is much faster, because it is based on a relatively
simple equation for the log—likelihood function and its
partial derivatives. Estimation based on the LSQ proce-
dure can be used as a second method for validating results
obtained by the MLE method. Example 1 shows that it



can be used as an additional criterion to avoid irrelevant
solutions in the considered ill-posed inverse problem.

APPENDIX
Example 1

1. 10.05; 12.19; 13.20; 14.83; 29.81; 30.82
2. 16.07;28.93

3. 6.49; 8.47; 9.94; 12.80; 13.81; 19.83; 24.52;
25.53;27.74; 28.75; 34.62

4. 2.04; 7.64; 13.27; 14.28; 16.94; 20.22; 23.96;
25.00; 29.56; 30.57; 31.58; 32.59; 33.60; 37.65

5. 5.24; 7.81; 8.89; 11.22; 12.30; 21.34; 22.35;
26.38; 31.46; 32.47; 37.95
Example 2

1. 0.870171; 0.959605; 1.638113

2. 0.494943; 0.912076; 1.164948;1.224501

3. 1.050094; 1.518585

4. 0.8146915; 1.813109

5. 0.606765; 1.236887; 1.755929
Example 3

1. 3.915579; 7.819686; 11.467476

2. 4.457433; 9.254106; 13.789127

3. 5.011945; 8.577584; 13.196124

4. 3.873146; 7.508159; 11.028036

5. 3.637726 7.467283; 11.635722
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AHHOTALUA

METO/bl PETYJISAPU3ALIAA MO/JIEJIENA
KNKNMbI

B. Kpusuos, A. EBkuH

Haubonee o0606wennvie mooenu  HAOEHCHOCHU
B60CCMAHABIUBAEMBIX — CUCTEM — ObLIU  NPEOLOANCEHbL
Kuowcumoni (1986) nymem e6sedenuss m.n. npoyecca g-
soccmanosnenus. Kpusyos u Eexun [2] nokazanu, umo
cmamucmuyeckoe OYeHU8anue maxkozo poda npoyecca
OMHOCUMCSL K KAACCY NA0XO 00YCIOBNIEHHbIX, 0OPAMHbIX
3a0ay (07151 KOMOPbIX peuleHue HeYHUKAIbHO UIU OYeHb
YYECMBUMENLHO K CIAMUCMUYECKOMY pazdpocy OaHHbIX)
u mpebyem pecyrapuzayuu no Tuxonosy. bwviio
NPEONoCEHO  Pecyapu306ams  dmy  3a0ayy  nymem
PA30enbHo20  OYeHUBaHus — napamempos  OaA306020
pacnpedenenus U napamempa  60CCMAHOGIeHUs. B
OoawnHoU cmamupe obcyscoaemces OanvHetiuiee
ycosepuencmeosanue memoda Kpusyosa—Eexkuna 6
paMKax — npoyedyp — HAUMEHbWUX  Kea0pamos U
MAKCUMATLHO20 NPABOON0000uUs. Ycosepuiencmeosannas
pezynapuzayus 0cobenHo 3pgexmuena Ons  8b1O00POK
manvlx  00vemos. Oyenounass u IKCMPANOISAYUOHHASL
MOYHOCTb  NPEOJIONCEHHO20 Memodd NOOMEEePHCOeHA
YUCHEHHbIMU ~ OKCHepUMeHmamy  Oasi  pada  06a306bix
pacnpeodenenuil, BKIIOYAIOUUX 2ayccosckoe,
noeHopmanvroe u Beiibynia—I nedenxo.

AHoTalis

METOJU PETYJISIPU3ALIIE MOJEJIE
KIKIMU

B. KpuBnos, A. EBkin

Haiibinow y3aeanvneni mooeni Haodiunocmi 8i0HOG-
moganux cucmem oyau s3anpononosani Kixcimou (1986)
WILAXOM 86e0eHnHsl M.36. npoyecy g-eioHosnenna. Kpusyos
i Eexin [2] noxazanu, wo cmamucmuyne OYIHIOBAHHS
maxkoeo pody npoyecca GiOHOCUMbC 00 KIACYy HOSAHO
00YMOBIeHUX, 00epHeHUx 3a0ay (015 AKUX DilieHHs He-
VHIKAIbHe abo Oydice Yymaugo 00 CIMAMUCMUYHO20 PO3-
Kuoy oauux) i eumaeae pezynapuszayii no Tuxonosy. byio
3anPONOHOBAHO  PE2YNAPUIVEAMU YO 3A0aYy WIAXOM
PO30iIbHO20 OYIHIOBAHHA NApaMempie 6a308020 po3nooi-
Ay i napamempa 8iOHo8NeHHA. Y OaHiti cmammi 062080-
proemvcs nodanvuie yoockonanenus memody Kpueyosa-
Eexina 6 pamxax npoyedyp navumenuux keaopamis i max-
CUMANbHOL npasdonodibrocmi. Yoockonanena peeyisipu-
3ayis 0codU6o epexmuena 0nst BUOIPOK MAnUX 00Cs2ls.
Oyinouna i excmpanoasyis MoYHiCMb 3aNpONoOHO8AHO20
Memooy niomeepod’ceHa HUCEeNbHUMU eKCHepUMeHmMAaMu
0 pAdy 06a308ux po3noodinig, Wo GKIYAIOMb 2AYCOBCH-
Ke, 102HOpMmanbhe i Betibyana-I nedenxo.





